دخول
النتائج 1 إلى 4 من 4
  1. #1
    تربوي مبدع
    تاريخ التسجيل
    Jan 2014
    المشاركات
    114

    افتراضي للفاءدة شرح كامل لوحدة الداءرة مدعم باصور

    للفاءدة شرح مفصل لوحدة الداءرة مدعوم بالصور ما عليك إلا زيارة الموقع /www.jmasi.com/circel/circel.htm

  2. #2
    تربوي مبدع
    تاريخ التسجيل
    Dec 2012
    الدولة
    Sumail
    المشاركات
    252

    افتراضي رد: للفاءدة شرح كامل لوحدة الداءرة مدعم باصور

    معلومات عامة (1)
    الدائرة في المرحلة الثانوية تختلف جذرياً عنها في المرحلة الإعدادية فهنا ندرس الصور المختلف لمعادلة الدائرة وعلاقتها بدائرة أخرى أو مستقيم من حيث الوضع وأمور أخرى تركز في غالبيتها على المعادلات، ولكن سنستعين بالعديد من الأفكار التي دُرست في المرحلة الإعدادية ليس في الدائرة فقط بل في الهندسة بصورة عامة.
    سنقسم موضعنا هذا إن جاز لنا التعبير (المسابقة) لعدة أقسام
    1) معادلة الدائرة بصورها المختلفة
    2) علاقة دائرة بدائرة أخرى أو مستقيم
    3) التماس
    4) المحل الهندسي
    =======================================
    معادلة الدائرة التي مركزها ( د ، هـ) ونصف قطرها نق هي:
    ( س – د)2 + ( ص – هـ)2 = نق2 نق نصف قطر الدائرة
    نحصل على هذه المعادلة من استخدام قانون البعد بين نقطتين
    مربع البعد بين النقطتين ( س1 ، ص1) ، ( س2 ، ص2) هو:
    مربع البعد بين النقطتين = ( س2 – س1)2 + ( ص2 – ص1)2
    وبتطبيقه على البعد نق الواصل بين ( س ، ص) ، ( د ، هـ)
    مع ملاحظة ( د ، هـ) أي نقطة في مستوى الإحداثيات الديكارتيه والشكل المرفق توضيح لذلك.



    معادلة الدائرة التي مركزها نقطة الأصل ونصف قطرها نق
    وفي حال كون د = 0 ، هـ = 0 أي ( د ، هـ) تكون نقطة الأصل
    فإن معادلة الدائرة تؤول إلى س2 + ص2= نق2
    وهي معادلة الدائرة التي مركزها نقطة الأصل ونصف قطرها نق
    ويمكن الحصول عليها مباشرة من الشكل باستخدام نفس القانون
    السابق وهو البعد بين نقطتين.


    معادلة الدائرة التي طرفا قطر فيها ( س1 ، ص1) ، ( س2 ، ص2) هي:
    ( س – س1) ( س – س2) + (ص – ص1)( ص – ص2) = 0
    يمكن الحصول عليها من:
    ق< د = 90ه < د مرسومة في نصف دائرة لاحظ الشكل
    ميل ب د × ميل د هـ = – 1 تعامد مستقيمين
    الميل لمستقيم مار بنقطتين = فرق الصادات ÷ فرق السينات

    ص – ص1 ص – ص2
    ـــــــــــــــــــ × ـــــــــــــــــــــ = – 1
    س – س1 س – س2


    ( س – س1) ( س – س2) = –(ص – ص1)( ص – ص2)

    ( س – س1) ( س – س2) + (ص – ص1)( ص – ص2) = 0


    الصورة العامة لمعادلة الدائرة:
    من: ( س – د)2 + ( ص – هـ)2 = نق2 وبفك الأقواس نحصل على
    س2 + ص2–2 د س –2هـ ص + د2+ هـ2– نق2 = 0 وبوضع د= – ل ، هـ = – ك ، د2 + هـ2– نق2 = حـ يكون:
    س2 + ص2 + 2 ل س + 2 ك ص + حـ = 0 مركزها (– ل ، – ك) ونصف قطرها نق حيث نق2= ل2 + ك2 – حـ
    لاحــــــــظ:
    1) لإيجاد المركز من المعادلة نجعل معامل س2= معامل ص2= 1 ثم المركز = (– معامل س÷2 ، – معامل ص÷2)
    2) إذا مرَّ محيط الدائرة بنقطة الأصل فإن حـ = 0 والعكس صحيح لأن س = ص = 0 وتؤول المعادلة إلى:
    س2 + ص2 + 2 ل س + 2 ك ص = 0

    حالات خاصة:
    1) إذا وقع المركز م = (– ل ، – ك) على محور السينات
    فإن ك = 0 (إي نقطة تقع على محور الصادات إحداثها السيني =0)
    أي م = (– ل، 0) وتصبح معادلة الدائرة:
    س2 + ص2 + 2 ل س + حـ = 0
    ويكون ل2 + ك2 – حـ = نق2 ( ك = 0 )
    أي أن: ل2– حـ = نق2

    2) إذا وقع المركز م = (– ل ، – ك) على محور الصادات
    فإن ل = 0 (إي نقطة تقع على محور الصادات إحداثها السيني =0)
    أي م = (0 ، – ك) وتؤول معادلة الدائرة:
    س2 + ص2 + 2 ك ص + حـ = 0
    ويكون ل2 + ك2 – حـ = نق2 ( ل = 0 )
    أي أن: ك2– حـ = نق2

    3) إذا مسَ محيط الدائرة محور السينات
    فإن ك = نق
    أي ك2= نق2
    ومن: ل2+ ك2– حـ = نق2
    ل2– حـ =0
    ل2 = حـ

    3) إذا مسَ محيط الدائرة محور الصادات
    فإن ل = نق
    أي ل2= نق2
    ومن: ل2+ ك2– حـ = نق2
    ك2– حـ =0
    ك2 = حـ

    3) إذا مسَ محيط الدائرة محور السينات فإن ك = ل = نق
    والمركز هنا ( نق ، نق ) وتوجد 4 دوائر حسب موقـــع
    المركز في أي ربع من الأرباع الأربعة.
    ( س – نق)2 + ( ص – نق)2 = نق2
    ( س + نق)2 + ( ص – نق)2 = نق2
    ( س + نق)2 + ( ص + نق)2 = نق2
    ( س – نق)2 + ( ص + نق)2 = نق2

  3. #3
    العضو المجيد بمنتدى الرياضيات
    تاريخ التسجيل
    Jan 2006
    الدولة
    ♡KHASAB♡
    المشاركات
    6,792

    افتراضي رد: للفاءدة شرح كامل لوحدة الداءرة مدعم باصور

    اقتباس المشاركة الأصلية كتبت بواسطة nass8888 مشاهدة المشاركة
    معلومات عامة (1)
    الدائرة في المرحلة الثانوية تختلف جذرياً عنها في المرحلة الإعدادية فهنا ندرس الصور المختلف لمعادلة الدائرة وعلاقتها بدائرة أخرى أو مستقيم من حيث الوضع وأمور أخرى تركز في غالبيتها على المعادلات، ولكن سنستعين بالعديد من الأفكار التي دُرست في المرحلة الإعدادية ليس في الدائرة فقط بل في الهندسة بصورة عامة.
    سنقسم موضعنا هذا إن جاز لنا التعبير (المسابقة) لعدة أقسام
    1) معادلة الدائرة بصورها المختلفة
    2) علاقة دائرة بدائرة أخرى أو مستقيم
    3) التماس
    4) المحل الهندسي
    =======================================
    معادلة الدائرة التي مركزها ( د ، هـ) ونصف قطرها نق هي:
    ( س – د)2 + ( ص – هـ)2 = نق2 نق نصف قطر الدائرة
    نحصل على هذه المعادلة من استخدام قانون البعد بين نقطتين
    مربع البعد بين النقطتين ( س1 ، ص1) ، ( س2 ، ص2) هو:
    مربع البعد بين النقطتين = ( س2 – س1)2 + ( ص2 – ص1)2
    وبتطبيقه على البعد نق الواصل بين ( س ، ص) ، ( د ، هـ)
    مع ملاحظة ( د ، هـ) أي نقطة في مستوى الإحداثيات الديكارتيه والشكل المرفق توضيح لذلك.



    معادلة الدائرة التي مركزها نقطة الأصل ونصف قطرها نق
    وفي حال كون د = 0 ، هـ = 0 أي ( د ، هـ) تكون نقطة الأصل
    فإن معادلة الدائرة تؤول إلى س2 + ص2= نق2
    وهي معادلة الدائرة التي مركزها نقطة الأصل ونصف قطرها نق
    ويمكن الحصول عليها مباشرة من الشكل باستخدام نفس القانون
    السابق وهو البعد بين نقطتين.


    معادلة الدائرة التي طرفا قطر فيها ( س1 ، ص1) ، ( س2 ، ص2) هي:
    ( س – س1) ( س – س2) + (ص – ص1)( ص – ص2) = 0
    يمكن الحصول عليها من:
    ق< د = 90ه < د مرسومة في نصف دائرة لاحظ الشكل
    ميل ب د × ميل د هـ = – 1 تعامد مستقيمين
    الميل لمستقيم مار بنقطتين = فرق الصادات ÷ فرق السينات

    ص – ص1 ص – ص2
    ـــــــــــــــــــ × ـــــــــــــــــــــ = – 1
    س – س1 س – س2


    ( س – س1) ( س – س2) = –(ص – ص1)( ص – ص2)

    ( س – س1) ( س – س2) + (ص – ص1)( ص – ص2) = 0


    الصورة العامة لمعادلة الدائرة:
    من: ( س – د)2 + ( ص – هـ)2 = نق2 وبفك الأقواس نحصل على
    س2 + ص2–2 د س –2هـ ص + د2+ هـ2– نق2 = 0 وبوضع د= – ل ، هـ = – ك ، د2 + هـ2– نق2 = حـ يكون:
    س2 + ص2 + 2 ل س + 2 ك ص + حـ = 0 مركزها (– ل ، – ك) ونصف قطرها نق حيث نق2= ل2 + ك2 – حـ
    لاحــــــــظ:
    1) لإيجاد المركز من المعادلة نجعل معامل س2= معامل ص2= 1 ثم المركز = (– معامل س÷2 ، – معامل ص÷2)
    2) إذا مرَّ محيط الدائرة بنقطة الأصل فإن حـ = 0 والعكس صحيح لأن س = ص = 0 وتؤول المعادلة إلى:
    س2 + ص2 + 2 ل س + 2 ك ص = 0

    حالات خاصة:
    1) إذا وقع المركز م = (– ل ، – ك) على محور السينات
    فإن ك = 0 (إي نقطة تقع على محور السينات إحداثها الصادي =0)
    أي م = (– ل، 0) وتصبح معادلة الدائرة:
    س2 + ص2 + 2 ل س + حـ = 0
    ويكون ل2 + ك2 – حـ = نق2 ( ك = 0 )
    أي أن: ل2– حـ = نق2

    2) إذا وقع المركز م = (– ل ، – ك) على محور الصادات
    فإن ل = 0 (إي نقطة تقع على محور الصادات إحداثها السيني =0)
    أي م = (0 ، – ك) وتؤول معادلة الدائرة:
    س2 + ص2 + 2 ك ص + حـ = 0
    ويكون ل2 + ك2 – حـ = نق2 ( ل = 0 )
    أي أن: ك2– حـ = نق2

    3) إذا مسَ محيط الدائرة محور السينات
    فإن ك = نق
    أي ك2= نق2
    ومن: ل2+ ك2– حـ = نق2
    ل2– حـ =0
    ل2 = حـ

    3) إذا مسَ محيط الدائرة محور الصادات
    فإن ل = نق
    أي ل2= نق2
    ومن: ل2+ ك2– حـ = نق2
    ك2– حـ =0
    ك2 = حـ

    3) إذا مسَ محيط الدائرة محوري السينات والصادات فإن ك = ل = نق
    والمركز هنا ( نق ، نق ) وتوجد 4 دوائر حسب موقـــع
    المركز في أي ربع من الأرباع الأربعة.
    ( س – نق)2 + ( ص – نق)2 = نق2
    ( س + نق)2 + ( ص – نق)2 = نق2
    ( س + نق)2 + ( ص + نق)2 = نق2
    ( س – نق)2 + ( ص + نق)2 = نق2
    ملخص غاية في الروعة
    جزيل الشكر اخي
    جزاك الله خيراً

  4. #4
    تربوي ماهر
    تاريخ التسجيل
    Apr 2013
    المشاركات
    50

    افتراضي رد: للفاءدة شرح كامل لوحدة الداءرة مدعم باصور

    جميل جدا ، بارك الله فيك..

الكلمات الدلالية لهذا الموضوع

المشاركة في الشبكات الإجتماعية

المشاركة في الشبكات الإجتماعية

ضوابط المشاركة

  • لا تستطيع إضافة مواضيع جديدة
  • لا تستطيع الرد على المواضيع
  • لا تستطيع إرفاق ملفات
  • لا تستطيع تعديل مشاركاتك
  •  
XHTML RSS CSS w3c