دخول
النتائج 1 إلى 7 من 7
  1. #1

    افتراضي بحوث للمواد العلمية

    المقدمة
    البلاسـتيك ويُسمّى أيضًا اللدائن، مـواد يمكن تشكيلها في صور مختلفة. والبلاستيك من أكثر المواد المصنعة نفعًا للإنسان، حيث تمتلئ منازلنا ومدارسنا وأماكن عملنا بمنتجات البلاستيك. ويقوم المهندسون بتطوير البلاستيك ليكون صلبًا مثل الفولاذ أو هشًّا مثل القطن. ويمكنهم القيام بصنع بلاستيك بأي لون من ألوان قوس قزح، أو صنع بلاستيك شفاف أو دون لون مثل البلورة. كما يُمكن أن يكون البلاستيك مطاطيًا أو صلبًا، ويمكن تشكيله على وجوه مختلفة لا حصر لها، ابتداء من دعامات السيارات حتى القنينة القابلة للانضغاط، وحتى الأنسجة الهشّْة. ولمنتجات البلاستيك وخصوصًا تلك التي تستعمل في الصناعة، أعمار تمتد لسنوات عديدة.
















    مكونات البلاستيك
    تكون البلاستيك من سلاسل طويلة من الجزيئات تُسمَّى بوليمرات. وتتكون هذه السلاسل من نماذج متكررة من جزيئات صغيرة. وتكون كل من هذه الجزيئات الصغيرة حلقة في سلسلة البوليمر. والسلاسل في بعض البلاستيك صلبة ومصفوفة كقطع من جذوع الشجر الطافية نحو أسفل النهر. وبعض أنواع البلاستيك الأخرى مرنة ومتشابكة، وتعطي هذه التركيبات المختلفة للبلاستيك أبرز سماتها، أي المقدرة على التشكُّل.
    ورغم مميزات وفوائد البلاستيك فإن له مشكلاته. وأكبرها، هي أن أغلب أنواع البلاستيك تحتاج وقتًا طويلاً للتحلل. فقد أصبحت كيفية التخلص من فضلات البلاستيك مشكلة تسبب قلقًا بيئيًا رئيسيًا.
    كيف يُستعمل البلاستيك
    ابتدع المهندسون مئات من أنواع البلاستيك المختلفة، كل له خواصه. واخترعوا البلاستيك الذي يمكن أن يحل محل الفلزات، والألياف الطبيعية، وجلود الحيوانات، والورق، والخشب، والحجر، والزجاج، والسيراميك. ويستعمل الصنَّاع البلاستيك لصنع منتجات أقوى وأخف، تبقى لفترة طويلة، وتكون سهلة الصيانة وقليلة التكلفة. وبالإضافة إلى ذلك فقد استعمل المخترعون البلاستيك لصنع مواد لا يمكن صنعها من غيره.
    إحلاله محل الفلزات. يحل البلاستيك محل الفلزات في الطائرات والسيارات والعديد من النبائط الميكانيكية. ويستعمل صانعو الطائرات أجنحة وأجسامًا مجمعة من البلاستيك لخفض وزن الطائرة ويترتب على ذلك تقليل الوقود المستهلك. ولا تصدأ أجزاء السيارات المصنوعة من البلاستيك ولا تتصدع بسهولة مثل الأجزاء الفلزية وهي غالبًا أسهل وأقل تكلفة في إصلاحها.
    وقد حلّ البلاستيك محل الفلزات في كثير من المباني والمواد الإنشائية، مثل الأنابيب، وسقوف المنازل، حيث لا تتعرض سقوف الأسطح المصنوعة من البلاستيك إلى النقر مثلما تتعرض المواد الأخرى المصنوعة من الألومنيوم. والأنابيب المصنوعة من البلاستيك أخف وزنًا وأسهل في القطع والوصل. وإضافة إلى ما سبق فإنها لا تتآكل مثل الأنابيب الفلزية.
    إحلاله محل الورق. حل البلاستيك محل الورق في كثير من عمليات التغليف والتعبئة. ويستخدم التغليف والتعبئة البلاستيكية الإسفنجية لحماية المنتجات المعبأة في الصناديق أكثر من استخدام الورق المضغوط. وتستعمل الكثير من مطاعم الوجبات السريعة أوعية بلاستيكية لحفظ الأغذية دافئة.
    وللفافات البلاستيك استعمالات كثيرة، فهي تحافظ على الأطعمة الملفوفة لمدة أطول مما تفعل اللفافات الورقية. ويمكن للُّفَافات البلاستيكية أن تشد لتكون مانع تسرب حول فتحات الأوعية. وكثير من المواد التي تباع في عبوات وصناديق ورقية مقواة مثل ألبومات حفظ الأسطوانات تقفل بإحكام بوساطة لفافات رقيقة من البلاستيك.
    إحلاله محل الخشب والحجر. يتم إحلال البلاستيك محل الخشب والحجارة في عمليات كثيرة. وتتخذ الأسطح المصنوعة من البلاستيك المضغوط نماذج مختلفة بعضها يشبه الرخام. وأسطح البلاستيك أخف وأقل كلفة وأسهل تركيبًا من الرخام وهو أيضًا يقاوم الخدش والتبقع.
    ويستعمل صنَّاع الأثاث البلاستيك في إنتاج أبواب الحجرات الصغيرة وأسطح المناضد، يشبه الخشب في منظره، ولكنه أسهل في التنظيف وغير قابل للالتواء. وقد حل البلاستيك محل الأخشاب أيضًا في صناعة هياكل القوارب. والقوارب البلاستيكية أكثر قوة وتتطلب صيانة أقل. وبخلاف الهياكل الخشبية للقوارب، يمكن صنع الهياكل البلاستيكية بسهولة من قطعة واحدة.
    إحلاله محل الزجاج والسيراميك. حل البلاستيك محل الزجاج والخشب في منتجات مختلفة، لأنه أخف في الوزن واحتمال كسره أقل. ويستخدم بلاط البلاستيك لتغطية الجدران، والحمامات وأحواض الغسيل. وهو أقل تكلفة وأسهل في التركيب عن مثيله من السيراميك، كما أن نوافذ الطائرات المصنوعة من البلاستيك الأكريليكي أخف وأقل هشاشة من نوافذ الزجاج. ومن ناحية أخرى فإن القوارير البلاستيكية لاتنكسر بسهولة، وقد حلت محل القوارير الزجاجية في تعبئة الكثير من الأطعمة والأشياء المنزلية.
    استعماله لأغراض أخرى. يستعمل البلاستيك في كثير من الصناعات التي لا تتيسر للمواد الأخرى. وللبلاستيك تطبيقات طبية كثيرة لأنه غير ضار للجسد ويمكن أن يتشكل بأي شكل. ويُمكن للأجزاء المصنوعة من البلاستيك أيضًا أن تحل محل المفاصل المصابة كالفخذ والركبة والإصبع.
    كما يمكن للأجزاء البلاستيكية أن تستعمل في إعادة بناء أجزاء الوجه التي أصيبت في حوادث. وتستعمل أجزاء البلاستيك في بعض الأحيان لإصلاح صمامات القلب المصابة. ويُستعمل البلاستيك أيضًا في صنع إسفنج عازل للحرارة والصوت، ويمكن إدخال العازل في جدار المنزل بنفثه عن طريق فتحة صغيرة. كما يمكن احتواء الدوائر المتكاملة التي تحتوي على آلاف الترانزستورات والتي تتحكم في سريان الكهرباء، داخل البلاستيك حماية لها ودون أن تتسبّب في انقطاع التيار الكهربائي.

    أنواع البلاستيك
    بالرغم من وجود أشكال مختلفة للبلاستيك، إلا أن هناك نوعين أساسيين يصنفان بناء على كيفية سلوك المادة عند تسخينها. وهذان الصنفان هما : 1- البلاستيك الذي يتصلد بالحرارة 2- البلاستيك الحراري.
    البلاستيك الذي يتصلد بالحرارة أو المتصلدات الحرارية، يمكن أن يُسخَّن ويتشكّل مرة واحدة فقط. ولا يمكن إعادة صهره أو تشكيله. وعندما تسخن المتصلدات الحرارية، تمر بتفاعل كيميائي يسمى الترابط المختلط يربط سلاسلها البوليمرية بعضها ببعض. ويشبه هذا التفاعل تصلد البيضة عندما يتم غليها. وبمجرد أن تتصلد لا يمكن أن تصبح سائلة مرة أخرى. ولأن المتصلدات الحرارية لا يمكن أن يُعاد صهرها فإن المهندسين يستعملونها في تطبيقات تتطلب مقاومة عالية للحرارة. والمنتجات المصنوعة من البلاستيك المتصلد الحراري تتضمن مقابض القدور والصواني التي تستخدم في تعقيم الأجهزة الطبية.
    البلاستيك الحراري. يمكن صهره وإعادة تشكيله. ولا تُكوِّن سلاسله البوليمرية ترابطًا مختلطًا. وعلى ذلك يمكن للسلاسل أن تتحرك بحرية في كل الأوقات التي يسخن فيها البلاستيك.
    يستعمل المصنِّعون البلاستيك الحراري أكثر من استعمالهم للمتصلد الحراري، لأن البلاستيك الحراري أسهل في التداول، ويتطلب وقتًا أقل ليتصلد (نحو عشر ثوان بالمقارنة بخمس دقائق للمتصلد الحراري). وأغلب البلاستيك الحراري، على نقيض المتصلد الحراري، يمكن نثره على شكل سائل ينتج عنه طلاء شديد اللمعان. ولأن جزيئاته يمكن أن تنزلق ببطء، الواحدة على الأخرى، فإن بعض البلاستيك الحراري يميل إلى فقدان شكله عند تعرضه إلى ضغط ثابت على مدى فترة طويلة من الزمن. ولهذا السبب يفضل المصنعون استعمال المتصلد الحراري في المنتجات مثل المقاعد البلاستيكية.

    كيف يصَّنع البلاستيك
    تسمى المواد التي تستعمل في صنع منتجات البلاستيك الراتينجات الصناعية. وتصنع هذه الراتينجات من النفط، أساسًا ولكن بعضها يأتي من مواد طبيعية مثل الفحم والغاز الطبيعي والقطن والخشب. وينتج المصنعون الراتينج ويبيعونه إلى الشركات التي تصنع منتجات البلاستيك.
    كيمياء البلاستيك. لنفهم كيفية إنتاج البلاستيك من المفيد أن نتعلم شيئًا عن كيمياء البوليمرات. تتكون البوليمرات في البلاستيك من جزيئات صغيرة تسمى مونومرات (أحاديات الحد). وتتكون أغلب هذه الجزيئات من ذرات الكربون والهيدروجين والنيتروجين والأكسجين. ويتضمن بعضها ذرات الكلور والفلور والسليكون والكبريت. وتتكون السلسلة البوليمرية من مئات أو آلاف أو حتى ملايين من حلقات المونومرات. وتصنع هذه الحلقات في بعض البوليمرات من نفس النوع من المونومرات، وتتكرر الحلقات مرات ومرات. وتتكون الأخرى من نوعين أو أكثر من المونومرات التي قد يتصل بعضها مع بعض عشوائيًا أو في تتابعات بالتبادل. وفي بعض البوليمرات ترتبط كتل أو مجموعة من نوع واحد من المونومرات مع كتل أو مجموعة نوع آخر.
    وقد يكون لسلاسل البوليمر أفرع أو تكون بدونها، وقد يكون للسلسلة أفرع من جانب واحد فقط أو يكون متبادلاً من جانب لآخر. وقد تُحزم السلاسل بعضها مع بعض في صف مستقيم لتصنع مادة صلبة قاسية متبلورة، أو قد تبقى متشابكة وتنتشر متباعدة لتصنع مادة هشّة مطاطية. وتعتمد خواص البلاستيك على أنواع المونومرات في سلاسل البوليمر وطول السلاسل وترتيبها.ويمكن أن تمتزج أنواع مختلفة من جزيئات البوليمر بعضها ببعض لتكون سبائك بوليمرية أو مزيجًا. وتكوين السبائك يكون دائمًا أسهل من إنشاء بوليمرات صناعية جديدة. وقد يكون لها خواص تقع بين مكوناتها البوليمرية، أو قد يكون لها خواص أفضل من أيهما. ويمكن لعلماء البلاستيك أن يصنعوا أصنافًا من البلاستيك ذات خواصّ مثالية لأي غرض من الأغراض، وتستخدم سبائك البلاستيك في منتجات شتى تتراوح بين رقائق تغليف الأفلام وأجزاء هياكل السيارات.


    عمل الراتينجات الصناعية. يُعدّ صانعو الراتينجات البوليمرات بخلط مركبات كيميائية. وتختلف هذه المركبات من كيميائيات معروفة مثل النشادر والبنزين ومركبات ذات أسماء يَصْعُب نطقها مثل هكساميثلين ديامين.
    وعندما يخلط الصانع مركبات مناسبة، تسبب التفاعلات الكيميائية تجمع الذرات بعضها حول بعض لتكون مونومرات. وبالإضافة إلى ذلك تسبب التفاعلات بلمرة المونومرات التي تكون سلاسل طويلة من الجزيئات. وتنتج عملية البلمرة الراتينج الصناعي.
    يستعمل المصنعون المضافات كثيرًا لتغيير خواص راتينج البلاستيك. وتتضمن المضافات الشائعة 1- إضافات التقوية 2- المالئات 3- الملدنات 4- الأخضاب.
    يستعمل صناع الراتينج الكثير من المقويات كالألياف الزجاجية أو الألياف الكربونية لإعطاء البلاستيك قوة إضافية أو صلادة، ويحتوي الخليط الناتج الذي يسمى البلاستيك المقوى، على 10 إلى 80% من إضافات التقوية. وهذه المركبات خفيفة الوزن، ويمكن أن تحل محل الفلزات في صناعة الصواريخ والطائرات والسيارات.
    وقد يستعمل صنَّاع الراتينج مالئات لتحسين جودة البلاستيك أو لزيادة كمية الراتينج غالي الثمن. وتتضمن المالئات الشائْعة مسحوق الخشب والتلك والطين.
    ويضيف المصنعون الملدنات إلى راتينجات صناعية معينة لجعلها أكثر لينًا وأكثر مرونة وأسهل تشكيلاً. وتتغلب الملدنات على قوى الجذب بين سلاسل البوليمر وتفصل بينها لتمنع 1- التشابك فيما بينها، 2- تُغَيرُ الأصباغ من لون البلاستيك. ويستعمل صنَّاع الراتينج الأصباغ لإنتاج ألوان مختلفة كثيرة جدًا.
    تمكن الإضافات صنَّاع الراتينج من صنع بلاستيك أكثر فائدة. على سبيل المثال، بلاستيك الفينيل يكون شفافًا طبيعيًا صلبًا، ولكن بفضل الإضافات يمكن أن يُصنع من بلاستيك الفينيل منتجات تشمل الأنابيب الرمادية الصلدة والأسطوانات السوداء القليلة المرونة ونوافذ أسقف السيارات الشفافة الناعمة.


    صنع منتجات البلاستيك. يتضمن ذلك سبع عمليات أساسية لتشكيل البلاستيك وتحويله إلى منتجات وهي 1- القولبة 2- السبك أو الصب 3- البثق 4- تشكيل الرقائق المصقولة 5- تشكيل الرقائق 6- التشكيل الرغوي 7- التشكيل الحراري.
    القولبة. هناك عمليات قولبة مختلفة تتضمن الضغط، والحقن، والنفخ، والقولبة الدورانيّة. وفي كل هذه العمليات تستخدم القوة في معالجة المواد البلاستيكية أثناء دخولها إلى القالب وبعده. وبمجرد تصلد المنتج، ترفع من القالب لاستعماله من جديد.
    والقولبة بالضغط هي أكثر عمليات قولبة المتصلدات الحرارية شيوعًا. وتتضمن منتجات القولبة بالضغط دعامات السيارات والمفاتيح الكهربائية ومقابض أواني المطبخ، والكاويات. وفي القولبة بالضغط يُضغط على البلاستيك وبعد أن يتكوّن، يُفتح القالب ويخرج المنتج.
    والقولبه بالحقن وهي أكثر أنواع قولبة البلاستيك الحراري استخدامًا. وتتضمن منتجات القولبة بالحقن الهواتف، وحاويات الحواسيب الإلكترونية وعجلات قيادة السيارات. وفي القولبة بالحقن تسقط أقراص الراتينج من وعاء قمعي إلى أسطوانات أفقية حيث تُصهر. ويدفع المكبس أو اللولب الدوّار الذي يكون بداخل الأسطوانة السائل الراتينجي عن طريق الضغط إلى القالب. وتأخذ أغلب منتجات القولبة بالحقن من 10 إلى 30 ثانية فقط كي تتصلد. يفتح القالب ثم يدفع مسمار طرد المنتج المشكل خارج القالب. ويقفل عندئذ القالب ثم يعاد ملؤه.
    تستعمل القولبة بالنفخ في صنع قوارير مجوفة. وفي هذه العملية، تدخل أنبوبة من الراتينج المنصهر تسمى باريسون إلى القالب. ويدفع عندئذ هواء مضغوط أو بخار إلى الباريسون الذي يتمدد دافعًا الراتينج إلى جوانب القالب فيبقى حتى يتصلد.
    تنتج القولبة الدورانية أيضًا أشياء مجوفة مثل كرات القدم ولعب الأطفال (الدُّمى) وخزانات وقود السيارات. ويُملأ القالب جزئيًا في هذه العملية بمسحوق الراتينج. عندئذ يُسخَّن القالب بينما يُدار المحرك بسرعة شديدة مكونًا قوة طرد مركزيَّة. وتدفع هذه القوة الراتينج المنصهر إلى جدران القالب وتبقيها في نفس وضعها حتى تبرد وتتصلد.
    السبك أو الصب. على عكس القولبة لا يعتمد الصب على أي ضغط خارجي لتشكيل البلاستيك. ويستعمل المصنعون هذه الطريقة لتشكيل كل من مواد البلاستيك الحراري والتصلد الحراري. ولصب المتلدنات الحرارية يصب الراتينج المنصهر في قالب ويبرد حتى يتصلد. ويوظف المصنعون السبك أو الصب في عمل الألواح السميكة والتروس والثقالات والمجسمات الأخرى.
    البثق. يستعمل البثق لإنتاج الأنابيب والقضبان والألياف وأغطية الأسلاك ومنتجات أخرى لها نفس الشكل على مدى الطول الكلي. تدخل جزيئات صلبة من البلاستيك الحراري الخارج من الإناء المخروطي إلى أسطوانة ثابتة مسخنة ويدفعه واحد أو أكثر من اللوالب الدوارة حيث ينصهر بينما يدفع إلى الأمام. وتدفع المادة المنصهرة إلى الخارج خلال قالب تشكيل.
    تشكيل الرقائق المصقولة أو التمليس. تنتج رقائق أو أغشية على نمط مستمر وذلك بضغط البلاستيك المنصهر بين زوجين مصقولين من الأسطوانات الساخنة، يضيف الصنَّاع الألياف والأوراق أو رقائق من المعادن خلال الأسطوانتين لإنتاج عناصر مثل أوراق اللعب المغطاة بالبلاستيك ومفارش المناضد.
    تشكيل الرقائق أو التصفيح. يستعمل البلاستيك في لصق أكداس من الألياف الزجاجية والخشب والورق والأقمشة والرقائق الفلزية. تطلى الرقائق أو تنقع في الراتينج. وتوضع بعد ذلك الواحدة فوق الأخرى، حيث تضغطها آلة الرقائق بعضها مع بعض وتسخنها حتى يربط الراتينج بينها بقوة. وتنتج عملية تشكيل الرقائق موادّ قوية ذات سمك يتسع لعمل منتجات مختلفة. وتتضمن هذه المنتجات الخشب المضغوط ولوحات الدوائر الإلكترونية وألواح تغطية المناضد.
    التشكيل الرغوي. يشير إلى إحدى الطرق المتعددة لإنتاج البلاستيك الإسفنجي. وكل هذه الطرق تتضمن إدخال غاز إلى راتينج البلاستيك الساخن، حيث يتمدد الغاز ويكون فقاعات داخل الراتينج الذي يبرد. وتكوِّن المادة الناتجة بلاستيكًا إسفنجيًا خفيف الوزن يسمى في بعض الأحيان البلاستيك الخلوي. واعتمادًا على الراتينج والطريقة المستعملة، يمكن للبلاستيك الإسفنجي أن يكون قويًا كالذي يستعمل عازلاً في المنازل وفي تغليف وتعبئة الوجبات السريعة. وهناك نوع آخر يمكن أن يكون لينًا مطاطيًا مثل الإسفنج المستعمل في المساند ووسادات الأثاث.
    التشكيل الحراري عملية غير مكلفة تستعمل في تشكيل العناصر من رقائق البلاستيك. ويُثبِّت العمال في هذه العملية رقائق البلاستيك فوق القالب. وتسخن الرقائق عندئذ حتى تصبح لينة، ثم تمتص مضخة الهواء من القالب إلى الخارج خلال ثقوب بالغة الصغر. ويُكوِّن هذا فراغًا يسحب رقائق البلاستيك اللينة إلى أسفل حتى تغطي سطح القالب. وهناك تبرد وتتصلد في شكل القالب. ويستعمل الصناع التشكيل الحراري لإنتاج أشياء مثل أحواض الاستحمام وقواعد الحمامات الرشاشية وأوعية تعبئة الزبادي.

    تطور البلاستيك
    استخدم الناس الصمغ الطبيعي ذا الخواص الشبيهة بخواص البلاستيك لآلاف السنين. وعلى سبيل المثال، أنتج الإغريق القدامى والرومانيون أشياء من الكهرمان وهو راتينج أحفوري. واستعمل الأوروبيون في العصور الوسطى الراتينج الطبيعي، اللّك، والمادة النقية منه، الشيلاك، في كساء مختلف الأشياء.
    تطورت عمليات التشكيل تجاريًا لمواد بلاستيكية طبيعية في منتصف القرن التاسع عشر. وقام المصنعون بتشكيل عناصر من اللك، والجاتابرشا (راتينج من الأشجار) ومواد أخرى كانوا يحصلون عليها من الحيوانات والنباتات والمواد المعدنية. وشملت المنتجات التي صنعت من هذا البلاستيك الطبيعي مقابض الفُرش والحليات والعوازل الكهربائية والأسطوانات (الأقراص) وأشياء أخرى مبتكرة. وبالرغم مما تتمتع به هذه المنتجات من جمال إلا أن هذه المواد المشكلة كانت لها عيوب كثيرة. كان الصناع يعانون غالبًا صعوبة في الحصول على المادة الخام، وكثير من المواد كان صعب التشكيل، فضلاً عن سهولة كسره عندما يُصنع.
    اختراع السليلويد. طور جون هيات، الذي عمل طابعًا بنيويورك بالولايات المتحدة الأمريكية، في أواخر الستينيات من القرن التاسع عشر، مادة لتحل محل العاج النادر الوجود والذي كان يستعمل لصنع كرات البلياردو. وفي عام 1870م تسلم هو وأخوه أسايا رخصة براءة حكومية لاكتشافهما لمادة سمياها فيما بعد بالسليلويد. كان السليلويد أول مادة بلاستيكية صناعية تستعمل على نطاق تجاري واسع. صنع هيات السليلويد أولاً بمعالجة السليلوز - وهو مادة توجد في القطن- بحمض النيتريك. ثم أدى تفاعل المادة المنتجة أي البيروكسلين مع مذيب الكافور إلى مادة السليلويد وهي مادة صلبة، قاسية ولكن يمكن تشكيلها عند ضغط وحرارة مرتفعين وتحويلها إلى كثير من الأشياء النافعة.
    استعمل السليلويد لعدة سنوات في صنع منتجات مثل الأمشاط وأطقم الأسنان وأفلام التصوير ولكنها كانت سريعة الاشتعال بدرجة كبيرة. وخلال الأعوام المبكرة من القرن العشرين، أنتج الباحثون مادة شبيهة بها ولكنها أقل في سرعة الاشتعال اسمها خلات السليلوز. يستعمل المصنعون خلات السليلوز في الوقت الحاضر في صنع الأفلام والألياف، وأشكال أخرى. ولا زال السليلويد نفسه مستعملاً لإنتاج كرات تنس الطاولة.
    اختراع الباكليت. خلال الأعوام الأولى من القرن العشرين الميلادي حاول الكيميائي الأمريكي ليو باكلاند أن يصنع مادة صمغية بتركيب كيميائيات حمض الكاربوليك (يعرف أيضًا بالفينول)، والفورمالدهيد. وكان للكيميائيين تجارب في تركيب هذه الكيميائيات لسنوات عديدة، ولكن التفاعل كان عنيفًا، بحيث يصعب التحكم فيه. نجح باكلاند في السيطرة على حدة التفاعل الذي أدى بدوره إلى تكوين الراتينج الفينولي.
    ولم يكن هذا الراتينج الشيلاك الصناعي الذي كان يبحث عنه باكلاند، لكنه كان بالأحرى أول المتصلدات الحرارية البلاستيكية. سجل باكلاند براءة اكتشاف المادة عام 1909م وسماها باكليت على اسمه الشخصي. وأصبح الباكليت واسع الاستعمال في صنع مواد مثل الهواتف ومقابض القدور وأدوات القلي والمكاوي واستمر استعماله إلى اليوم في بعض المنتجات الكهربائية والسيارات.
    نمو صناعة البلاستيك. قادت معرفة الباكليت عام 1909م، العلماء إلى إدراك أفضل لكيمياء البوليمرات. واتسعت صناعة البلاستيك باطراد خلال العقود الثلاثة التالية. وحدثت أكثر التطورات المفاجئة خلال ثلاثينيات القرن العشرين، إذ شمل الاستعمال التجاري أربعة أنواع من البلاستيك الحراري هي الأكريليك والنيلون والبولسترين وكلوريد البوليفينيل (أو الفينيل). والأكريليك قوي وشفاف، وقد أصبح واسع الاستعمال في صنع نوافذ الطائرات. واستعمل النيلون في صناعة الجوارب والملابس النسائية، وفيما بعد في منتجات القولبة مثل المحامل والتروس. واستعمل المصنعون البولسترين في منتجات كثيرة، تتضمن ساعات الحائط وصناديق المذياع ولعب الأطفال (الدمى) وبلاط الجدران وأواني الأطعمة. واستعمل الفينيل في المنتجات المختلفة مثل خراطيم المياه والمعاطف الواقية من المطر وعازلات الأسلاك والقوابس الكهربائية. وساعد تقدم وسائل التشغيل المتخصصة في قولبة وتشكيل البلاستيك إلى عناصر مفيدة في التقدم الصناعي.
    وتم إدخال المتصلدات الحرارية البلاستيكية المسماة البلويسترات في الأربعينيات من القرن العشرين.كما تم تطوير المتصلدات الحرارية المهمة خلال الأربعينيات من القرن العشرين وتضمنت: البولي إيثلين، والسيليكونات، والأيبوكسي. ووجدت كل هذه الأنواع استعمالات جديدة خلال الخمسينيات من القرن العشرين. وقد ثبتت أهمية البولي إيثلين في صناعة أطباق الأكل والقوارير القابلة للانضغاط والحقائب البلاستيكية ومنتجات أخرى. استعمل المصنعون السليكون في المزينات والعوازل الكهربائية، واستعمله الجراحون في زراعة بعض الأجزاء الصناعية في الجسم. ولاقى راتينج الأيبوكسي قبولاً واسعًا بوصفه مادة لاصقة قوية. واستعمل الصناع البوليستر في صنع هياكل القوارب والسيارات.
    استمر استعمال البلاستيك ينمو خلال الخمسينيات والستينيات من القرن العشرين. وتوافق هذا النمو مع نمو صناعة البتروكيميائيات، وهي المصدر الأساسي لمواد البلاستيك الخام. وأوجد المهندسون استعمالات جديدة للبلاستيك في الطب والأبحاث النووية وأبحاث الفضاء والصناعة والمعمار. وابتكر كيميائيو البوليمرات عدة أنواع من البلاستيك مقاومة للكيميائيات والحرارة الشديدة.
    واستمر إدخال البلاستيك في تطبيقات جديدة خلال السبعينيات والثمانينيات من القرن العشرين مثل أواني الطهي بالميكرويف، وصناديق الحواسيب الشخصية، والأقراص الممغنطة. واستعمل مهندسو الفضاء رغوة البولي المقاوم للحرارة في تغطية خزان الوقود الخارجي للمكوك الفضائي الأمريكي. ويعمل هذا البلاستيك الرغوي عازلاً حراريًا يمنع فقدان الوقود بالتبخر. ابتكر العلماء خلال ثمانينيات القرن العشرين أول بلاستيك موصل عملي، وهو خلافًا للأنواع الأخرى، يمكن أن يحمل تيارًا كهربيًا. كما يمكن استعماله موصّلاً للكهرباء في البطاريات، وفي شبكات الأسلاك، والأنسجة التي تقاوم الإستاتية (التَّشْويش).
    صناعة البلاستيك
    قادت الولايات المتحدة واليابان والبلدان الصناعية الأخرى العالم في ميدان إنتاج البلاستيك. واستمرت صناعة البلاستيك في النمو السريع في تلك البلدان. ويعتمد نمو الصناعة في أي قطر على الإمداد الوفير من النفط.
    وتنقسم شركات البلاستيك إلى ثلاث مجموعات عامة هي: 1- الشركات المصنعة للراتينج (غالبًا ما تكون شركات كيميائية) وهي تصنع وتمد بالراتينج، 2- الشركات المنفذة وهم يحوّلون الراتينج إلى منتجات، 3- الشركات المجهزة والمعدة للأجزاء البلاستيكية. ويوجد أغلب صناع الراتينج في مناطق يمكن الوصول منها إلى مناطق التمويل بالنفط بسهولة. وتقوم غالبية الشركات المنفذة للعمليات والشركات المجهزة والمجمعة بالعمل في مناطق يمكن أن تخدم صناعات كثيرة.
    البلاستيك والبيئة
    عندما استعمل البلاستيك مادة للتغليف والتعبئة بشكل مكثف بوساطة المستهلكين، تولد المزيد من فضلات البلاستيك. وبما أن أغلب البلاستيك لا يتحلل بسرعة، فقد أسهمت هذه الفضلات بطريقة محسوسة في تلوث البيئة.
    وانبثقت فكرة إعادة تصنيع البلاستيك باعتبارها واحدة من طرق التصدي لمشكلة فضلاته، فقامت الصناعات التي تنتج أو تستعمل كميات كبيرة من البلاستيك بإعادة استعمال فضلاتها سنوات عدة. وهم يبدأون عادةً بتنظيف وفصل البلاستيك بأنواعه. ثم يقومون بإعادة استعمال البلاستيك الحراري وذلك بإعادة صهره وتشكيله في صورة منتجات جديدة، كما تطحن المتصلدات الحرارية إلى مسحوق ناعم أو تمزق. وتستعمل المساحيق مالئات، كما تستعمل القطع الصغيرة عوازل في منتجات مثل الألحفة وأكياس النوم.
    وتنبهت بعض البلدان عام 1980م، إلى إعادة الاستعمال لتساعد المستهلكين في التخلص من فضلات البلاستيك. وطلبت هذه المجتمعات من المواطنين فصل عناصر معينة من البلاستيك، مثل البوليستر، عن فضلات المواد الأخرى وبذا يمكن أن يعاد استعماله مثل فضلات الصناعات الأخرى.
    وبعض المجتمعات الأخرى لم تفصل البلاستيك ولكن بدلا من ذلك أحرقت خليطًا من الفضلات التي تجمعها البلديات. وتؤدي هذه العملية إلى الحصول على طاقة تُستَغل في توليد الكهرباء وفي التسخين. بيد أن هذه العملية تتطلب مواقد معقدة لإزالة الغازات الحمضية الناتجة من حرق الفينيل.
    وهناك معالجة أخرى لمشكلة التخلص من الفضلات، هي تصميم بلاستيك يمكن أن يتحلل بالطبيعة ومرور الزمن. وفي السبعينيات من القرن العشرين اكتشف علماء الكيمياء نوعًا من البلاستيك قابلاً للتحلل البيولوجي حيث تحلله الكائنات الدقيقة. وفي المنتجات المصنوعة من هذا البلاستيك تفصل جزيئات النشويات أو السليلوز من سلاسل بوليمر البلاستيكية، ومن ثم تنقضُّ الكائنات الدقيقة على النشويات وتستنفدها فتتبدد هذه المنتجات. كما توصل العلماء إلى نوع من البلاستيك يمكن تفكيكه بتعريضه للضوء لوقت طويل، عن طريق التحلل الضوئي. والعنصر الفعال في هذا البلاستيك هو مادة كيميائية تتفكك بفعل التعرض لضوء الشمس.
    وفي منتصف الثمانينيات بدأ المصنعون في استعمال البلاستيك القابل للتحلل في صنع أكياس النفايات، وأوعية على شكل كأس رغوية، ومنتجات أخرى، يسهل التخلص منها. ولكنهم واجهوا نقدًا حادًا من جمعيات حماية البيئة فضلاً عن بعض القائمين على صناعة البلاستيك. ويسوق هؤلاء النقاد الحجة في أنه لا يمكن التخلص من بقايا المكونات البلاستيكية القابلة للتحلل مهما تحكمنا في الظروف. وأن هذه البقايا لن تتحلل بدفنها في باطن الأرض. وقد أشاروا إلى أن المواد المضافة للبلاستيك لتمكينها من التحلل تجعل هذا البلاستيك غير قابل لإعادة استعماله.




















    المقدمة

    الإلكترونيات فرع من الفيزياء والهندسة يتناول التحكم في انسياب الشحنات الكهربائية في نبائط معينة لتحقيق أغراض مفيدة. وتستخدم المكوِّنات الأجزاء) الإلكترونية في مدى واسع من المنتجات، مثل أجهزة الراديو والتلفاز والحواسيب وحاكيات مسجلات الفيديو والمعينات السمعية والأجهزة الطبية والعديد من المنتجات الأخرى. وقد ازداد الاعتماد على المنتجات الإلكترونية في عصرنا الحالي إلى درجة أن هذا العصر يطلق عليه في الكثير من الأحيان العصر الإلكتروني.












    جهاز مسح بالليزر في موقع الخروج.
    الإلكترونيات
    الإلكترونيات جزء من مجال أوسع، أي مجال الكهرباء. ويشتمل الكهرباء على عنصرين مهمين هما 1- التيار الكهربائي 2- الفولتية الكهربائية. والتيار الكهربائي هو انسياب الشحنات الكهربائية، بينما تمثل الفولتية الكهربائية نوعًا من "الضغط" (أو القوة) الذي يسبب حركة الشحنات في اتجاه واحد. ومن الاستخدامات المعتادة للكهرباء تزويد المنازل والمؤسسات بالطاقة المستخدمة في توفير الضوء والحرارة، وفي قيادة المحركات.
    وتتعامل الإلكترونيات أساسًا مع استخدام التيار والفولتية لحمل الإشارات الكهربائية. والإشارة الكهربائية تيار كهربائي (أو فولتية كهربائية) محور بطريقة ما لتمثيل معلومات. فهي قد تمثل أصواتًا أو صورًا أو أرقامًا أو حروفًا أو تعليمات حاسوبية أو أي معلومات أخرى. ويمكن استخدام الإشارات أيضًا لعد الأجسام، وقياس درجة الحرارة والوقت، والكشف عن المواد الكيميائية المشعة.
    وتعتمد الإلكترونيات على مكونات معينة، فائقة التخصص، مثل الترانزستور، والدوائر المتكاملة، التي تشكل جزءًا من كل المعدات الإلكترونية تقريبًا. وتكمن قيمة مثل هذه النبائط في قدرتها على معالجة الإشارات بسرعة هائلة. فبعض المكونات تستطيع الاستجابة للإشارات ملايين المرات في الثانية.
    ويهتم مجال الإلكترونيات الدقيقة بتصميم وإنتاج المكونات الدقيقة ـ وخاصة الدوائر المتكاملة ـ والمعدات الإلكترونية التي تستخدم مثل هذه المكونات. فالمصنعون يمكنهم إنتاج ملايين المكونات الإلكترونية المجهرية، على قطعة من مادة تسمى الرقاقة، لا يزيد حجمها عن حجم ظفر الأصبع.
    وتستعرض هذه المقالة بشيء من الإفاضة المعدات والوظائف الأساسية للإلكترونيات وصناعة الإلكترونيات. وتعطي مقالات منفصلة في هذه الموسوعة تفاصيل دقيقة عن عدد من المواضيع ذات الصلة بالإلكترونيات. وللحصول على قائمة بهذه المقالات انظر مقالات ذات صلة، في نهاية هذه المقالة.

    استخدام الإلكترونيات

    مجهر إلكتروني مع شاشة للعرض.

    نظام التحكم في المرور الجوي.
    غيرت الإلكترونيات طريقة حياة الناس، حيث أصبحوا يعتمدون على المنتجات الإلكترونية في كل مناحي حياتهم تقريبًا.
    في الاتصالات. تربط نظم الاتصال الإلكترونية بين الناس في كل أرجاء العالم. فبإمكان الراديو نقل الصوت إلى أي مكان في العالم في جزء من الثانية. ويستطيع الناس في مختلف دول العالم الاتصال فوريًا عبر الهواتف والحواسيب. كذلك يستطيع مشاهد التلفاز متابعة حدث في قارة أخرى، أثناء حدوثه. ويمكِّن الهاتف الخلوي ـ الذي يسمى الهاتف الجوال أو النقّال ـ الشخص، من الاتصال بشخص آخر، وهما في الطريق، أو في سيارة، أو في أي مكان آخر. وترسل أجهزة الفاكس نسخ الوثائق، عبر خطوط الهاتف، في دقائق، وتستقبلها.
    معالجة المعلومات. تستخدم الحواسيب الإلكترونية في الأعمال التجارية والمدارس والدوائر الحكومية والمؤسسات الصناعية والمعامل العلمية والمنازل. ويعتمد الناس على الحواسيب في معالجة الكميات الضخمة من المعلومات في زمن وجيز، وفي حل المسائل الرياضية المعقدة في جزء من الثانية. وتتيح الخدمات الفورية عبر الهاتف، لمستخدمي الحواسيب، سرعة الوصول إلى مجموعة متنوعة من المعلومات والأشكال.
    الطب والبحوث. يستخدم الأطباء الأجهزة والماكينات الإلكترونية لتشخيص الاضطرابات ومعالجتها، فعلى سبيل المثال، تستخدم أجهزة الأشعة السينية الإشعاع الناتج عن نوع خاص من الصمامات الإلكترونية المفرغة، لأخذ صور للعظام والأجهزة الداخلية. ويحلل الأطباء هذه الصور للكشف عن الجروح والأمراض.
    وفي المعالجة الإشعاعية، أو ما يعرف باسم المداواة بالأشعة، تستخدم الأشعة السينية وأشكال الإشعاع الأخرى، سلاحًا قويًا ضد السرطان. ويعتمد الكثيرون من ضعاف السمع على المعينات السمعية الإلكترونية لتضخيم (تقوية) الموجات الصوتية.

    مركز التحكم لمركبات الفضاء التي يقودها ملاَّحون.
    وتمنح الحواسيب والأجهزة الإلكترونية الأخرى العلماء والباحثين فهمًا أوضح للطبيعة. فعلى سبيل المثال، تساعد الحواسيب العلماء على تصميم جزيئات أدوية جديدة، وتتبع النظم الجوية، واختبار النظريات التي تصف كيفية تكوُّن المجرات. وتستطيع المجاهر الإلكترونية تكبير العينات إلى مليون ضعف.




    يحسن التحكم الإلكتروني عمل عدد من المعدات المنزلية العادية، مثل الثلاجات وماكينات الخياطة والمحامص والغسالات، حيث يستطيع الناس برمجة أجهزة صنع القهوة ومرشات المروج وغيرها من المنتجات، لتبدأ العمل وتفرغ منه أوتوماتيًا. وتتحكم النبائط الإلكترونية في ألعاب الفيديو. وتسخن أفران المايكرويف الطعام بسرعة باختراقها بموجات راديوية قصيرة، ينتجها صمام مفرغ.
    وتستخدم الصناعات الحواسيب لضبط الماكينات الأخرى. وتؤدي الروبوتات الإلكترونية مهام متنوعة، قد تكون صعبة على الإنسان، أو مملة له، أو تشكل خطرًا على حياته. فعلى سبيل المثال، تستخدم الروبوتات في طلاء السيارات برش المادة الطلائية، التي تكون سامة للإنسان عند استنشاقه.
    وتعتمد الرحلات الجوية والبحرية، ورحلات الفضاء، على التوجيه بالرادار والراديو والحواسيب. وتحتوي معظم السيارات على حواكم إلكترونية في محركاتها ونظم وقودها. وتتحكم النبائط الإلكترونية أيضًا في انتفاخ الأكياس الهوائية، وهي نبائط سلامة تنتفخ لحماية سائق السيارة، أو الشخص الجالس في المقعد الأمامي، في حالة وقوع تصادم بالرأس.

    مصطلحات مستخدمة في الإلكترونيات
    الاتساع هو قوة الإشارة. ويمكن قياس الاتساع بوحدات التيار أو الفولتية أو القدرة.
    الإشارة تيار كهربائي محور، أو فولتية كهربائية محورة، لتمثيل معلومات مثل الصوت والصور والحروف.
    الإشارات الرقمية تمثل كل المعلومات بعدد محدود من الإشارات. وفي الترميز الثنائي تستخدم إشارتان فقط.
    الإلكترون الحر إلكترون يمكن أن يتحرك من ذرة لأخرى، موصلة بذلك التيار الكهربائي. وتسمى الإلكترونات الحرة أيضًا حاملات الشحنات.
    البوابات المنطقية مجموعات صغيرة من الدوائر مصممة لتقليد وظيفة منطقية مثل العد ومقارنة المعلومات.
    التحوير هو عملية إضافة الشوائب إلى شبه الموصل. تضيف هذه الشوائب، المسماة المحوِّرات، حاملات شحنات موجبة أو سالبة إلى المادة، مما يزيد من قدرتها على توصيل التيار الكهربائي.
    الترانزستور مكوِّن يستخدم إشارة صغيرة للتحكم في تيار قوي. وهو ترتيب من الوصلات م س يمكن استخدامه لتضخيم الإشارات أو قطع ووصل التيار.
    التردد عدد المرات التي تهتز فيها الإشارة، أي تغير اتجاه سريانها، في الثانية الواحدة.
    التقويم يغير التيار المتناوب إلى تيار مستمر.
    التضخيم هو تقوية الإشارة الضعيفة.
    الثنائي مكوِّن يمنع سريان التيار عبره في اتجاه واحد، ولكنه يسمح بمرور التيار في الاتجاه الآخر.
    حاملات الشحنات هي الإلكترونات التي يمكنها السريان من ذرة إلى أخرى، موصلة بذلك التيار الكهربائي.
    الدائرة المتكاملة رقاقة (قطعة) رهيفة من مادة شبه موصلة، وخاصة السليكون، تحتوي على دائرة إلكترونية كاملة. ويمكن أن تؤدي دائرة متكاملة واحدة عمل آلاف المكوِّنات الإلكترونية المفردة.
    الذبذبة تهز الإشارة الكهربائية إلى تردد مرغوب.
    الرمز الثنائي يستخدم في الحواسيب لتمثيل المعلومات، وتتكون من أصفار وواحدات نظام الترقيم الثنائي.
    شبه الموصل مادة توصل التيار الكهربائي أفضل من العازل، ولكن ليس بمستوى الموصل. وهو مهم لأن توصيله للتيار يمكن تغييره بالتحوير، والتحكم فيه بدقة بالإشارات.
    الصمام المفرغ مكون يتحكم في إشارة داخل حاوية أزيل عنها معظم الهواء.
    العازل مادة تمنع سريان التيار الكهربائي.
    الفجوة انعدام الرابطة الإلكترونية في البلورة.
    الفولتية نوع من الضغط أو القوة تدفع الشحنات عبر دائرة.
    المعالج الدقيق دائرة متكاملة تحتوي على دوائر ذاكرة ومعالجة وتحكم في رقاقة واحدة.
    المفتاح مكوِّن يوجه سريان التيار، ويمكنه قطع التيار أو وصله.
    المقاوم مكوِّن في دائرة يقلل سريان التيار.
    مكونات حالة الصلابة تتحكم في سريان الإشارات عبر مادة شبه موصلة صلبة.
    الموصل مادة يمكنها حمل التيار الكهربائي.
    الوصلة م س المنطقة التي يلتقي عندها شبه موصل نوع م بشبه موصل نوع س داخل بلورة متصلة.

    كيف يعمل النظام الإلكتروني

    أجزاء النظام الإلكتروني
    يهدف هذا الجزء من المقالة إلى تأسيس قاعدة لفهم الإلكترونيات، بوصف كيفية عمل جهاز شائع الاستخدام، وهو الحاسب الإلكتروني اليدوي (الآلة الحاسبة). يشتمل الحاسب الإلكتروني على لوحة مفاتيح صغيرة تحمل مفاتيح الأرقام والعمليات، وشاشة عرض توضح النتائج. وتحصل معظم الحاسبات على القدرة من بطارية صغيرة أو لوحة خلايا شمسية.
    وتحت لوحة المفاتيح توجد دوائر صغيرة لتشغيل الحاسب. والدائرة مجموعة من الأجزاء المترابطة يسري خلالها تيار كهربائي. ويحدث الضغط على المفتاح نبضًا من شحنة كهربائية يمثل الرقم أو العملية، أو ما يسمى الإشارة. وتنتقل الإشارات عبر أسلاك إلى الدوائر.
    ولكل دائرة وظيفة. فبعض الدوائر تخزن الإشارات مؤقتًا، في انتظار تعليمات أخرى. وتغير دوائر أخرى الإشارات حسب التعليمات. فعلى سبيل المثال، قد تضرب دائرة ما رقمين، كل منهما في الآخر. وأخيرًا ترسل دوائر معينة الإشارات التي تضيء أو تظلل مناطق معينة في شاشة العرض لتوضيح نتيجة العملية الحسابية.
    يمكن تقسيم عمليات الحاسب الآلي، مثل معظم النظم الإلكترونية، إلى ثلاثة مراحل 1- مرحلة الدخل، وفيها تدخل المعلومات إلى النظام في شكل إشارات 2- مرحلة المعالجة، وفيها تعالج الإشارات بطريقة أو أخرى 3- مرحلة الخرج، وفيها تغير الإشارات المعالجة إلى شكل يفهمه المستخدم. وتستخدم النظم أنواعًا مختلفة من نبائط الدخل والخرج التي تنتج الإشارات أو تستجيب لها. فعلى سبيل المثال، يتطلب البث الإذاعي أو التلفازي نبائط مثل الميكروفونات والمجاهير. ومنذ لحظة مغادرتها لنبيطة الدخل وحتى وصولها إلى نبيطة الخرج، تمر الإشارات بعدد من التغييرات التي تحدثها المكوِّنات الإلكترونية العاملة داخل الدوائر.
    الإلكترونيات والضوء
    في معظم النبائط الإلكترونية يستفيد المصنعون من قدرة الإلكترونات على امتصاص الطاقة وإطلاقها في شكل ضوء. وتشتمل هذه النبائط الإلكترونية البصرية على النبائط الحساسة للضوء والنبائط الباعثة للضوء والعارضات البلورية السائلة.
    النبائط الحساسة للضوء. تسمى أيضًا العيون الكهربائية، وهي نبائط تستخدم الطاقة الضوئية لإنتاج التيار الكهربائي أو التحكم فيه. ويتكون قلب النبيطة من ثنائي حساس للضوء يسمى الثنائي الضوئي، ويصنع عادة من السليكون. ويشبه الثنائي الضوئي الثنائي العادي، ولكنه يحتوي على نافذة أو عدسة تسمح بسقوط الضوء على الوصلة م س. ويدفع هذا الضوء بعض الإلكترونات خارج روابطها البلورية، حيث تنتج عن ذلك إلكترونات حرة وفجوات يمكنها السريان. وتولد بعض الثنائيات الضوئية، مثل الخلايا الشمسية، تيارًا كهربائيًا، حيث تزود ألواح من الخلايا الشمسية معظم الأقمار الصناعية، والعديد من النبائط الإلكترونية الصغيرة مثل الحاسبات الآلية، بالقدرة. وتستخدم ثنائيات ضوئية أخرى في قطع ووصل إمداد القدرة الخارجي. انظر: الضوء (الأشكال: الظاهرة الكهروضوئية للضوء).
    النبائط الباعثة للضوء. تستخدم التيار الكهربائي لإنتاج الضوء. وتصنع معظم الثنائيات الباعثة للضوء من زرنيخيد الجاليوم أو أي مركب شبه موصل آخر يطلق الطاقة في شكل ضوء، بدلاً عن الحرارة. وعندما يمر التيار عبر الثنائي الباعث للضوء تتحد الإلكترونات الحرة والفجوات الموجودة بالقرب من الوصلة م س. وعندما "يسقط" إلكترون حر داخل فجوة، تنطلق حزمة صغيرة من الطاقة الضوئية يسمى الفوتون. وبإمرار تيار قوي مناسب تتوهج منطقة الوصلة في الرقاقة بشدة. وتستخدم مجموعات من الثنائيات الباعثة للضوء في العديد من العارضات.
    وليزرات شبه الموصل ثنائيات خاصة تنتج حزمة رقيقة جدًا وقوية من الضوء. ولليزرات استخدامات عديدة في الاتصالات والصناعة والطب والعلوم. ففي الاتصال البصري الليفي، على سبيل المثال، تحول حزمة ليزرية الإشارات الكهربائية لمكالمة هاتفية أو صورة تلفازية إلى نبضات فوتونية. وتنتقل الإشارات الفوتونية بسرعات عالية على خيوط زجاجية شعرية دقيقة تسمى الألياف البصرية، دون فقدان الكثير من قوتها أو وضوحها.
    العارضات البلورية السائلة. تستخدم عادة في الحاسبات الآلية والساعات الرقمية والحواسيب. وفيها توضع طبقة رقيقة من بلورة سائلة بين شريحتين زجاجيتين. ويعكس العارض الضوء عادة، ولكن الإشارة الفولتية تسبب إظلام أجزاء منه، وهذه الأجزاء المظلمة هي التي تشكل الرقم أو الحرف.
    كيف تعالج الدائرة الإلكترونية المعلومات
    تعالج الدوائر المعلومات بتجميع الإشارات الدخلية لإنتاج معلومات جديدة حسب التعليمات. وتعتمد الطريقة التي تعالج بها الدائرة المعلومات على نوع الإشارات التي تعمل فيها.
    تعالج الدوائر الإلكترونية نوعين من الإشارات: 1- إشارات رقمية 2- إشارات قياسية. وتمثل الإشارات الرقمية بعدد محدود من الإشارات الفولتية، لكل منها قيمة مميزة. أما الإشارات القياسية فتتفاوت باستمرار في الفولتية والتيار حسب المعلومات الدخلية. ويمكن أن تمثل فولتية متراوحة تغييرات الضوء والصوت ودرجة الحرارة والضغط وموضع الجسم.
    الدوائر الرقمية. تعالج الدوائر الرقمية المعلومات بعدِّ الإشارات أو المقارنة بينها. والعديد منها تعالج المعلومات أسرع بكثير من الدوائر القياسية، ولذا تؤدي معظم المعالجات بالدوائر الرقمية.
    وفي المعالجة الرقمية تترجم كل البيانات الدخلية ـ الكلمات والأرقام وغيرها من المعلومات ـ إلى أرقام ثنائية، وهي مجموعات من واحدات وأصفار. وتطلق كلمة ثنائي (مكون من اثنين) على الشفرة لأن المعالجة تستخدم رقمين فقط. ويمكن تمثيل أي رقم ثنائي بتوليفة من الدوائر أو النبائط التي تكون في إحدى حالتين. فعلى سبيل المثال، يمكن أن تكون الدائرة موصولة أو مقطوعة. وتمثل إحدى الحالتين بالرقم 1، والآخر بالرقم صفر، ويسمى كل 1 أو صفر البت. وتعمل العديد من النظم ببتات في مجموعات تسمى الكلمات، وتسمى الكلمة التي تتكون من 8 بتات البايت.
    وتتطلب المعالجة الرقمية ثلاثة عناصر أساسية 1- دوائر الذاكرة، ووظيفتها تخزين البيانات 2- الدوائر المنطقية، ووظيفتها تغيير البيانات 3- دوائر التحكم، ووظيفتها توجيه عمليات النظام. وتربط قنوات سلكية تسمى الناقلات العناصر، بعضها ببعض، وبالدائرة كلها. ويجمع معالج دقيق هذه العناصر على رقاقة واحدة.
    دوائر الذاكرة. تخزن البتات بصفة دائمة أو مؤقتة. ويحوي نوع شائع من دوائر الذاكرة آلاف المكثفات مرتبة في صفوف. وتمسك هذه المكثفات البتات في شكل شحنة كهربائية أو في شكل انعدام الشحنة الكهربائية. ويوصل موصل فلزي كل مكثف إلى النظام، بينما تعمل ترانزستورات وثنائيات مفاتيح بين المكثفات والثنائيات. وعندما تفتح إشارة ما مفتاحًا تنتقل البتات عبر الموصل، وعندئذ تعيد دوائر أخرى تخزين البتات بإعادة شحن المكثفات بسلسلة الشحنات نفسها.
    وهناك نوعان أساسيان من دوائر الذاكرة ـ ذاكرة الوصول العشوائي (الرام) وذاكرة القراء فقط (الروم). وفي ذاكرة الوصول العشوائي يمكن محو المعلومات أو الإضافة إليها، حيث تخزن الدوائر المعلومات أثناء تزويدها بالقدرة، وعند قطع القدرة تزول كل الشحنات المخزنة. وتستخدم دوائر ذاكرة الوصول العشوائي في نبائط مثل الحواسيب وبعض الحاسبات، التي تحتاج تخزين كميات كبيرة من المعلومات لفترات قصيرة.
    وتخزن ذاكرة القراءة فقط المعلومات التي توضع فيها عند الصنع بصفة دائمة. وهذه المعلومات لايمكن محوها أو الإضافة إليها. وتحتوي ذاكرة القراءة فقط بصفة عامة على تعليمات أو برامج لتشغيل النظام.
    ولا تخزن كل الذاكرات في دوائر. فالحواسيب، على سبيل المثال، تستخدم أيضًا نبائط ذاكرة خارجية، مثل الأقراص الممغنطة أو الشرائط الممغنطة، يدخلها المستخدمون في النظام. ومن أنواع الذاكرة أيضًا القرص المدمج (سي دي)، والذي يخزن المعلومات على أسطوانة بلاستيكية. وبإمكان ذاكرة القراءة فقط ـ القرص المدمج (سي دي ـ روم) تخزين البيانات والصور والأصوات والبرامج.
    الدوائر المنطقية. وتسمى أيضًا المعالجات. تعالج هذه الدوائر البيانات حسب التعليمات. وفيها تمر البتات عبر سلسلة من المفاتيح التي تغيرها بطريقة أو أخرى. فقد تضيف مجموعة من المفاتيح عددًا معينًا إلى عدد آخر، وتسمى مثل هذه المجموعة الجامع، وقد يتكون من مئات المفاتيح. وفي أثناء المعالجة تخزن البتات مؤقتًا في مناطق تسمى السجلات، في انتظار التعليمة التالية.
    وبإمكان توليفة أخرى من المفاتيح المقارنة بين بتين، وتوليد خرج خاص على أساس مجموعة من القوانين مصممة بصفة خاصة للمعالج. وتستخدم هذه الدوائر أرقامًا ثنائية لتمثيل أفكار مثل "صواب" أو "خطأ"، عوضًا عن 1 أو صفر.
    ويولد المصممون مناطق في الرقاقة يمكنها عد الإشارات، أو المقارنة بينها، بالجمع بين مجموعات صغيرة من الدوائر، تحدث تغييرات طفيفة في بت واحد أو بتين. وتسمى هذه المجموعات عادة البوابات المنطقية. وهناك ثلاث بوابات أساسية هي : 1- البوابة لا 2- البوابة و 3- البوابة أو. وعند توليفها بأعداد كبيرة تستطيع هذه البوابات حل المسائل الرياضية أو المنطقية المعقدة.
    وتغير البوابة لا، والتي تسمى أيضًا العاكس البت من واحد إلى صفر، أو من صفر إلى واحد. ولهذه الوظيفة عدة استخدامات، حيث يشتمل الجمع، على سبيل المثال، على تغيير الأصفار إلى واحدات، والواحدات إلى أصفار.
    ويولد كل من البوابة و والبوابة أو إشارة خرجية واحدة من إشارتين دخليتين أو أكثر. وتتطلب البوابة و أن تكون كل الإشارات الدخلية صحيحة ـ وتمثل عادة بالرقم 1 ـ لإنتاج إشارة خرجية صحيحة أو 1، بينما تتطلب البوابة أو إشارة دخلية صحيحة واحدة فقط لإنتاج إشارة خرجية صحيحة.
    دوائر التحكم. توجه وتنسق عمل كل أجزاء النظام الأخرى حسب التعليمات المخزنة في دوائر الذاكرة. ومن المهام الرئيسية لدائرة التحكم ضبط حركة البتات عبر النظام. ولأداء هذه المهمة يولد مذبذب يسمى الساعة دفعات مستمرة. وتتحرك البتات عبر الدائرة حسب إيقاع الساعة.
    الدوائر القياسية. تحل المسائل بقياس كميات متغيرة باستمرار، مثل درجة الحرارة والسرعة والضغط. وتعمل العديد من النبائط الشائعة الاستخدام، مثل مقاييس السرعة والترمومترات، بوصفها حواسيب قياسية. وتدخل دوائر قياسية صغيرة في تركيب عدد من النظم الإلكترونية التي تتحكم في أعمال ماكينات أخرى، كما تستخدم الدوائر القياسية في معدات الملاحة. وللمزيد من المعلومات عن المعالجة القياسية انظر : الحاسوب القياسي .
    التحويل الرقمي القياسي. تستطيع بعض الدوائر تحويل الإشارات القياسية إلى إشارات رقمية، والإشارات الرقمية إلى إشارات قياسية. فعند تسجيل الصوت رقميًا، على سبيل المثال، يقاس اتساع (قوة) الموجة الصوتية آلاف المرات في كل ثانية، ويحوَّل إلى إشارة شفرية رقمية مكونة من دفعات تيار صغيرة. ولسماع الإشارات الرقمية الناتجة، يحولها نظام صوتي مرة أخرى إلى إشارات قياسية تدير مجهارًا. وتنتج الإشارات الرقمية نوعية صوتية أجود، ذات ضجيج وتشوه أقل، مقارنة بالإشارات القياسية.
    صناعة الإلكترونيات
    تمثل تنمية المنتجات الإلكترونية، وإنتاجها ومبيعاتها، إحدى كبرى الصناعات وأهمها وأسرعها تطورًا في العالم.
    البحوث والتطوير. يعمل المهندسون والعلماء في المعامل البحثية لإضافة معارف جديدة إلى الإلكترونيات، وابتكار نبائط إلكترونية جديدة. وللعديد من الجامعات وشركات الإلكترونيات معاملها البحثية الخاصة، كما تتبنى الحكومات البحوث الإلكترونية عبر وكالات مثل مركز سيرن الأوروبي بالقرب من جنيف في سويسرا والإدارة الوطنية للطيران والفضاء في الولايات المتحدة. وتتبنى العديد من الحكومات أيضًا بحوث الإلكترونيات عبر الفروع العسكرية.
    التصنيع والمبيعات. الولايات المتحدة واليابان هما أكبر دولتين منتجتين للمكونات الإلكترونية والمنتجات الإلكترونية المجمعة. وفي أوائل تسعينيات القرن العشرين كان عدد العاملين في الشركات الإلكترونية في الولايات المتحدة يزيد عن 1,5 مليون عامل، وبلغ إجمالي مبيعات شركات الإلكترونيات في الولايات المتحدة حوالي 300 بليون دولار أمريكي سنويًا. وخلال الفترة نفسها كان عدد العاملين في شركات الإلكترونيات في اليابان حوالي 2 مليون عامل، وبلغ إجمالي مبيعات الشركات اليابانية حوالي 190 بليون دولار أمريكي. ومن الدول الرائدة في إنتاج المعدات الإلكترونية كندا وألمانيا وهولندا وسنغافورة وكوريا الجنوبية وتايوان والمملكة المتحدة.
    تطور الإلكترونيات
    التجارب الأولى. خلال أواسط القرن التاسع عشر أجرى العلماء الاختبارات على أنابيب الغاز المفرغ، أي الأنابيب التي أزيل عنها جزء من الهواء، بحيث تبقى خليط رقيق من الغازات. وقد احتوت معظم هذه الأنابيب أخلاطًا من غازات مثل الهيدروجين والنيتروجين، عند ضغط منخفض. واكتشف العلماء أن التيار الكهربائي يمكن أن يمر عبر الغاز من قطب (طرف) فلزي إلى آخر. فعند توصيل بطارية إلى القطبين توهج الأنبوب بألوان براقة، فاعتقد العلماء أن الكاثود (القطب السالب) يطلق أشعة غير مرئية تنتج الألوان، وأطلقوا على الأشعة اسم الكاثود. وبإزالة مزيد من الغازات من الأنابيب، لإجراء التجارب، تحولت هذه الأنابيب إلى أنابيب مفرغة، سميت أيضًا الصمامات المفرغة.
    وفي عام 1879 صنع العالم البريطاني السير وليم كروكس أنبوبًا لدراسة أشعة الكاثود، وكانت أنابيب كروكس أوائل أنابيب الصور التلفازية.
    وفي عام 1895 اكتشف الفيزيائي الألماني ويلهلم رونتجن الأشعة السينية أثناء دراسته أشعة الكاثود في أنبوب كروكس. وبحلول نهاية القرن التاسع عشر كان الكثيرون من الأطباء يستخدمون صور الأشعة السينية لتشخيص الأمراض والجروح الداخلية.
    وفي عام 1897 أثبت الفيزيائي البريطاني جوزيف طومسون أن أشعة الكاثود تتكون من جسيمات سالبة الشحنة، سميت فيما بعد الإلكترونات، وقاد هذا الاكتشاف إلى صنع النبائط الإلكترونية الأولى.
    وفي أثناء أوائل القرن العشرين أنتج المهندسون الكهربائيون صمامات مفرغة بإمكانها كشف الإشارات الراديوية وتضخيمها وتوليدها. وفي عام 1907 سجل المخترع الأمريكي لي ديفورست براءة اختراع صمام مفرغ ثلاثي الأقطاب، وهو ما عرف باسم الثلاثي. وأصبح هذا الصمام عنصرًا أساسيًا في البث والاستقبال الإذاعي لقدرته على تضخيم الإشارات. وقد بدأ البث الإذاعي التجاري في عام 1920، ومعه ولدت صناعة الإلكترونيات.
    عصر الصمام المفرغ. امتد هذا العصر بين عشرينيات وخمسينيات القرن العشرين. وخلال هذه الفترة جعلت معرفة الصمامات المفرغة اختراعات إلكترونية مثل الرادار والتلفاز والحاسوب، ممكنة.
    وفي وقت مبكر، أي في عام 1875، بنى العالم الأمريكي ج. ر. كاري خلية كهروضوئية، وهي نبيطة تنتج تيارًا كهربائيًا عندما يسطع عليها الضوء. وقد كان اختراع كاري يعمل بنفس مبدأ آلة التصوير التلفازية، ولكنه لم يدخل حيز الاستخدام الفعلي حتى أوائل عشرينيات القرن العشرين. وفي عام 1923 صنع العالم الأمريكي الروسي المولد فلاديمير زوريكين أول صمام آلة تصوير تلفازية ناجح. وباستخدام صمام أشعة كاثود نموذجًا أنتج زوريكين أيضًا صمام صورة تلفازية عمليًا خلال عشرينيات القرن العشرين. وقد بدأ البث التلفازي التجريبي في أواخر عشرينيات القرن العشرين، ولكن البث الفعلي لم يبدأ على نطاق واسع إلا في أواخر أربعينيات القرن العشرين.
    وفي عام 1921 اخترع المهندس الأمريكي ألبرت هل مذبذب صمام مفرغ سمي الماجنترون، وكان هذا المذبذب أول نبيطة تنتج الموجات الدقيقة بكفاءة. وقد أتاح الرادار، الذي طور بالتدريج خلال عشرينيات وثلاثينيات القرن العشرين، أول استخدام واسع النطاق للموجات الدقيقة.
    وصل عصر الصمام المفرغ أوجه باكتمال صناعة أول حاسوب إلكتروني عام الأغراض في عام 1946. وقد صنع هذه الماكينة الضخمة، التي سميت الإنياك، مهندسان من جامعة بنسلفانيا بالولايات المتحدة، هما جي بربسبر إيكرت الابن وجون وليم موشلي. واحتوى الحاسوب على حوالي 18,000 صمام مفرغ، واحتل مساحة قدرها حوالي 170 مترًا مربعًا، وكان أسرع في عمله من أسرع الحواسيب الغير إلكترونية، التي كانت معروفة آنذاك، بألف مرة.
    ثورة نبائط حالة الصلابة. اخترع ثلاثة فيزيائيين أمريكيين هم جون باردين ووالتر براتين ووليم شوكلي الترانزستور في عام 1947. وقد أحدثت الترانزستورات ثورة في صناعة الإلكترونيات، بتقليلها أحجام الحواسيب والمعدات الأخرى إلى أحجام بالغة الصغر. واستخدمت الترانزستورات مضخمات في المعينات السمعية وأجهزة المذياع الجيبية الحجم في أوائل خمسينيات القرن العشرين. وبحلول ستينيات القرن العشرين كانت ثنائيات شبه الموصل والتزنزستورات قد حلت محل الصمامات المفرغة في الكثير من المعدات.
    تطورت الدوائر المتكاملة عن تقنية الترانزستور عندما حاول العلماء بحث طرق بناء مزيد من الترانزستورات داخل الدائرة. وقد سجلت براءة اختراع أولى الدوائر المتكاملة عام 1959 باسم عالمين أمريكيين هما المهندس جاك كيلبي والفيزيائي روبرت نويس، واللذان عملا منفصلين. وأحدثت الدوائر المتكاملة ثورة في الإلكترونيات في ستينيات القرن العشرين تساوي الثورة التي أحدثتها الترانزستورات في الخمسينيات، واستخدمت في بادئ الأمر في المعدات العسكرية والمركبات الفضائية، وساعدت في إنجاز أولى الرحلات الفضائية المأهولة في ستينيات القرن العشرين.

    أجهزة الطيران المبينة في الصورة هنا تحتوي على أجهزة استشعار إلكترونية وآلات تشغيل وحواسيب تقوم بتوليد حركات وصور تعطي الطيارين انطباعًا بطيران حقيقي وهم يجلسون في مقصورة على سطح الأرض.
    وأنتجت أولى المعالجات الدقيقة في عام 1971 لاستخدامها في الحاسبات المكتبية. وبحلول أواسط سبعينيات القرن العشرين أصبحت المعالجات الدقيقة تستخدم في الحاسبات اليدوية وألعاب الفيديو وعدد متزايد من الأجهزة المنزلية. وبدأ أصحاب الأعمال والمصنعون استخدام المعالجات الدقيقة للتحكم في الأنواع المختلفة من الأجهزة المكتبية ومعدات المصانع وغيرها من النبائط.





    الإلكترونيات اليوم
    يوالي المهندسون والعلماء البحث لجعل الدوائر الإلكترونية أصغر وأسرع وأكثر تعقيدًا. وتشتمل التقنيات المتطورة على الموصلات الفائقة والفوتونيات.
    والموصلات الفائقة مواد عديمة المقاومة لسريان التيار الكهربائي في درجات الحرارة المنخفضة. وتعمل نبائط الموصلات الفائقة بسرعة عالية، ولا تنتج عنها أي حرارة. ويجري العلماء الاختبارات على نبائط القطع والوصل الفائقة التوصيل للتحكم في الدوائر الحاسوبية.
    والفوتونيات هو علم بناء الدوائر التي تستخدم الإشارات الفوتونية (الفوتونات حزم دقيقة من الطاقة الضوئية) عوضًا عن الإلكترونات، حيث تستخدم حزمًا من الفوتونات المنبضة لنقل البيانات والأوامر عبر ألياف بصرية. وتستطيع الدوائر الفوتونية حمل كميات ضخمة من المعلومات، ولا تنتج أي حرارة. ويبشر استخدام الألياف البصرية ذات القدرة الفائقة على حمل المعلومات بمولد عصر جديد في مجالات الترفيه المنزلي والاتصالات وتقنية الحواسيب.
    وتشهد تقنيات العرض الإلكترونية أيضًا تغيرات سريعة. فالمصنعون الآن يحاولون تطوير ألواح عرض أكثر تسطحًا، لتحل محل أنابيب الأشعة الكاثودية الضخمة، المستخدمة الآن في التلفاز والعديد من شاشات الحواسيب.
    ويستخدم تصميم أُنتج في عام 1993 آلاف الأنابيب الدقيقة جنبًا إلى جنب لتشكيل الصورة، حيث يقل عرض الشاشة عن 10 سنتيمترات. وتعتمد تقنية أخرى على ألواح عرض بلورية سائلية أكثر تسطحًا من ذلك، حيث يمكن تعليق هذه الشاشات الخفيفة الوزن، الموفرة للطاقة، على الجدار، مثل الصورة. واليوم تستخدم الحواسيب المحمولة، مثل حواسيب المفكرات، شاشات عرض بلوري سائلي مسطحة.
    وفي أوائل تسعينيات القرن العشرين بدأ المصنعون استخدام نوع جديد من العارضات البلورية السائلية يسمى العارض البلوري السائلي ذا المصفوفة الفعالة في الحواسيب المحمولة وألعاب الفيديو والمنتجات الإلكترونية الأخرى. وفي هذا النوع من العارضات تتحكم آلاف الترانزستورات الموضوعة على السطح الداخلي للزجاج في الإشارات التي تنشط البلورة السائلة.
















    ذرّات مفردة لعنصري البلاتين والبلاديوم مكبَّرة ثلاثة ملايين مرة، وهي تبدو كنقط صفراء في الصورة التي التُقطت بوساطة مجهر إلكتروني. وتمثِّل المساحات الصفراء ذات المراكز الحمراء أو الأرجوانية تجمعات للذرات. وقد أضيف اللون إلكترونيًا لتحسين الصورة بينما الذرّات نفسها عديمة اللون.
    الــــذَّرَّة إحدى الوحدات الأساسية لبناء المادة. فكل شيء حولنا مكون من ذرَّات. والذرَّة الواحدة بالغة الصِّغر، فهي لاتتعدى واحدًا على مليون من سُمْك شعرة . وتحتوي أصغر عيِّنة يمكن رؤيتها بمجهر عادي على ما يزيد على عشرة بلايين ذرة.

    وتكوّن الذرات القوالب البنائية لأبسط المواد، وهي العناصر الكيميائية. وتشمل العناصر الشائعة : الهيدروجين والأكسجين والحديد والرصاص. ويتكون كل عنصر كيميائي من نوع أساسي واحد من الذرّات. أما المركَّبات الكيميائية، فهي مواد أكثر تعقيدًا من حيث تركيبها الكيميائي؛ إذ تتألف من نوعين أو أكثر من الذرّات مرتبط بعضها ببعض في وحدات تُسمَّى الجزيئات. فالماء، على سبيل المثال، مركب يتكون كل جزيء منه من ذرتين من الهيدروجين مرتبطتين بذرة واحدة من الأكسجين.

    وتتفاوت الذرات كثيرًا في الوزن، ولكنها جميعًا تتساوى تقريبًا في الحجم. فذرّة اليورانيوم، على سبيل المثال، وهي أثقل الذرّات الموجودة في الطبيعة، يبلغ وزنها مائتي ضعف وزن ذرّة الهيدروجين الذي يُعدُّ أخف العناصر المعروفة حتى الآن. ومع ذلك فإن قطر ذرّة اليورانيوم لا يتعدى ثلاثة أمثال قطر ذرّة الهيدروجين تقريبًا.

    وبالرغم من أن الذرّات تُعدُّ من أدق الأشياء في العالم إلا أنها تُعدُّ أيضًا من أعظمها قوة، فبداخلها كمية هائلة من الطاقة الكامنة. وقد استطاع العلماء تسخير هذه الطاقة في إنتاج أسلحة الدمار البالغة التأثير كما استطاعوا أيضًا الاستفادة منها في توليد الكهرباء.


    أجزاء الذرّة

    أجزاء الذرة. تتكون الذرة من ثلاثة أنواع أساسية من الجُسيمات، هي البروتونات، والنيوترونات، والإلكترونات. للبروتونات شحنة موجبة وللإلكترونات شحنة سالبة بينما النيوترونات متعادلة كهربائيًا. تتجمع البروتونات والنيوترونات داخل النواة، وهي منطقة صغيرة جدًا بالقرب من مركز الذرة. وتدور الإلكترونات بسرعات بالغة خلال الفضاء الفارغ خارج نواة الذرة.
    بالرغم من ضآلة الذرّة إلا أنها تتكون من جُسيمات أكثر صغرًا منها. والجسيمات الثلاثة الأساسية هي: البُروتونات، والنيوترونات، والإلكترونات. ولكل ذرة عدد محدد من هذه الجُسيمات تحت الذرية.

    تزدحم البروتونات والنيوترونات داخل النواة، وهي منطقة بالغة الصغر في مركز الذرة. فلو كان قطر ذرة الهيدروجين ستة كيلومترات، على سبيل المثال، فإن النواة لا يتعدى حجمها حجم كرة المضرب العادية. وما يتبقى من حجم الذرة خارج النواة هو في أغلبه فضاء فارغ. وفي هذا الفضاء، تدور الإلكترونات حول النواة بسرعة بالغة تقطع بها بلايين الرحلات في كل جزء من المليون جزء من الثانية.

    وبسبب سرعة الإلكترونات البالغة، تبدو الذرّة وكأنها جامدة، وذلك بنفس المبدأ الذي يمنع مرور قلم رصاص خلال أنصال مروحة تدور بسرعة عالية.

    وكثيرًا ما تقارَن الذرّات بالنظام الشمسي، فتُعتبر النواة مناظرة للشمس، والإلكترونات مناظرة للكواكب التي تدور حولها. لكن هذه المقارنة ليست صحيحة على إطلاقها. فعلى عكس الكواكب، لا تتبع االإلكترونات مسارات منتظمة مرتبة. بالإضافة إلى أن البروتونات دائمة التحرك عشوائيًا داخل النواة.



    مقارنة الذرات من حيث الوزن والحجم.تتباين الذرات بدرجة كبيرة في الوزن لكنها جميعًا لها نفس الحجم تقريبًا. وأصغر وأخف الذرات على الإطلاق هي ذرة الهيدروجين. وهي تحتوي على بروتون واحد وإلكترون واحد. أما أكبر وأثقل ذرة موجودة في الطبيعة فهي ذرة البلوتونيوم. ولهذه الذرة 94 بروتونًا، و150 نيوترونًا و94 إلكترونًا. وتزن ذرة البلوتونيوم ما يعادل وزن 200 ذرة هيدروجين تقريبًا. لكن قطر ذرة البلوتونيوم يبلغ نحو ثلاثة أضعاف مقدار قطر ذرة الهيدروجين فقط.
    النواة. تشكِّل النواة تقريبًا كل كتلة الذرة. والكتلة هي كمية المادة في ذرة. وتبلغ كتلة البروتون 1,836 ضعف كتلة الإلكترون. وكذلك من 1,839 إلكترونًا نحصل على كتلة النيوترون. ويحمل كل بروتون وحدة واحدة من وحدات الشحنة الموجبة، بينما يحمل الإلكترون وحدة واحدة من وحدات الشحنة السالبة. أما النيوترونات فهي غير مشحونة. وتحتوي الذرّة في أغلب الأحوال على نفس العدد من البروتونات والإلكترونات، وبالتالي فالذرّة متعادلة كهربائيًا.

    البروتونات والنيوترونات أصغر بـ 100,000 مرة تقريبًا مقارنة بوزن الذرة، ولكنها تتألف بدورها من جُسيمات أكثر صغرًا يسمى كل منها كوارك. ويتكون كل بروتون وكل نيوترون من ثلاثة من جسيمات الكوارك. ويستطيع العلماء في المختبر جعل جسيمات الكوارك تتجمع وتكوّن أنواعًا أخرى من الجسيمات تحت الذرية بجانب البروتونات والنيوترونات. ولكن كل هذه الجسيمات الأخرى تتفكك وتتحول إلى جُسيمات عادية في غضون ثانية واحدة. ولهذا فلا يوجد أي منها في الذرات العادية. وقد عرف العلماء أن البروتونات والنيوترونات تتكون من جسيمات الكوارك من خلال دراستهم للجسيمات تحت الذرية. وللحصول على معلومات عن الجسيمات تحت الذرية الأخرى، انظر: فيزياء الجسيمات. وكذلك المقالات المنفصلة عن الجسيمات تحت الذرية المشار إليها في "مقالات ذات صلة" في نهاية هذه المقالة.


    الإلكترونات. على عكس البروتونات والنيوترونات فإن الإلكترونات لا تحتوي على جُسيمات أصغر. وكتلة الإلكترون بالغة الصغر. وتُكتب قيمة هذه الكتلة بالجرامات، بوضع علامة عشرية يتبعها 27 صفرًا ثم رقم 9.

    ونظرًا لأن الشحنات المتضادة تتجاذب، فإن النواة الموجبة الشحنة تعمل بقوة جذب على الإلكترونات السالبة الشحنة، مما يؤدي إلى بقاء هذه الإلكترونات داخل الذرة. لكن لكل إلكترون طاقة تمكنه من مقاومة جذب النواة. وكلما ازدادت طاقة الإلكترون ازداد بُعده عن النواة. وهكذا تنتظم الإلكترونات في مدارات على مسافات مختلفة من النواة حسب مقدار طاقة كل منها. فتوجد الإلكترونات الأقل طاقة في المدارات الداخلية، بينما توجد الإلكترونات الأكثر طاقة في المدارات الخارجية.

    ويعطي العلماء لكل مدار إلكتروني رقمًا خاصًا به. فالمدار الأقرب إلى النواة يُسمَّى بالمدار رقم 1. وترقم المدارات الأخرى 2 ، 3 ، 4 ، 5 ، 6 ، 7 حسب الترتيب التصاعدي لبعدها عن النواة. ويشار إلى المدارات في بعض الأحيان بالحروف الهجائية. ويوجد على كل مدار عدد محدود من الإلكترونات، فلا يستطيع المدار الأول الاحتفاظ بأكثر من إلكترونين. ويستطيع المدار الثاني الاحتفاظ بثمانية إلكترونات والثالث بثمانية عشر إلكترونًا، والرابع باثنين وثلاثين إلكترونًا، والخامس بخمسين إلكترونًا، والسادس باثنين وسبعين إلكترونًا، والسابع بثمانية وتسعين إلكترونًا. غير أن هذه المدارات الخارجية لا يكتمل بها عدد الإلكترونات مطلقًا.


    --------------------------------------------------------------------------------

    مدارات الإلكترونات والسلوك الكيميائي تنتظم إلكترونات الذرة في مدارات. ترقم هذه المدارات بالأرقام من 1 إلى 7 بدءًا من المدار الداخلي. ويستطيع كل مدار الاحتفاظ بعدد معين من الإلكترونات. فعلى سبيل المثال، يستطيع المدار رقم 2 الاحتفاظ بثمانية إلكترونات فقط. وفي التفاعلات الكيميائية يكتسب المدار الخارجي أو يفقد إلكترونات أو يشارك فيها.

    --------------------------------------------------------------------------------


    لذرة الفـــلور سبعة إلكترونات في المدار2. تقوم الــذرة بملء هذا المدار باكتساب إلكترون من ذرة أخرى.

    في ذرة النيون، المدار2 ممتلىء. ونتيجة لهذا فإن هذا الغاز لا يدخل عادة في تفاعلات كيميائية مع ذرات أخرى.

    تميل ذرة الصوديوم إلى فقد الإلكترون الوحيد الموجود في المدار 3، وبذلك يصبح المدار 2 الممتلىء هو مدارها الخارجي.




    خواص الذرّات

    العدد الذرّي. وهو يبين لنا عدد البروتونات التي تحتوي عليها الذرة. فعلى سبيل المثال، تحتوي كل ذرة هيدروجين على بروتون واحد، ولهذا، فإن العدد الذرّي للهيدروجين 1. ويتدرج العدد الذري للعناصر الطبيعية الأخرى تصاعديا حتى يصل إلى 92 لليورانيوم، الذي يحتوي على 92 بروتونًا في كل ذرة من ذراته. وتتكون كذلك كميات ضئيلة من البلوتونيوم، الذي يبلغ عدده الذري 94، بصورة طبيعية. ويمكن إيجاد العناصر التي يزيد عددها الذري على 92 في المختبر.

    يحدد العدد الذري ترتيب العنصر في الجدول الدوري. وينظم هذا الجدول العناصر المختلفة في مجموعات تتشابه في خواصها الكيميائية. للاطلاع على هذا الجدول انظر: العنصر الكيميائي.



    نظائر الهيدروجين. النظائر هي ذرات لنفس العنصر لها أعداد مختلفة من النيوترونات. وللهيدروجين، على سبيل المثال، ثلاثة نظائر. البروتيوم وهو أكثر نظائر الهيدروجين شيوعًا، وتحتوي نواته على بروتون واحد. والديوتريوم تحتوي نواته على بروتون واحد ونيوترون واحد بينما تحتوي نواة النظير الثالث للهيدروجين وهو التريتيوم على بروتون واحد واثنين من النيوترونات.
    العدد الكتلي. هو حاصل جمع عدد البروتونات وعدد النيوترونات في ذرة. وبالرغم من أن كل الذرات في عنصر ما لها نفس عدد البروتونات، إلا أنها قد تختلف في عدد النيوترونات. ويطلق على الذرات التي لها نفس عدد البروتونات وتختلف في عدد النيوترونات اسم النظائر.

    وأغلب العناصر الموجودة في الطبيعة لها أكثر من نظير فالهيدروجين، على سبيل المثال، له ثلاثة نظائر. وتتكون النواة في أكثر نظائر الهيدروجين شيوعًا من بروتون واحد فقط. بينما تتكون النواة في النظيرين الآخرين من نيوترون واحد أو نيوترونين بالإضافة إلى البروتون. ويستخدم العلماء العدد الكتلي للتمييز بين نظائر الهيدروجين الثلاثة لتصبح هيدروجين 1، هيدروجين 2، هيدروجين 3. كما يُسمون الهيدروجين 1 بروتيوم، وهيدروجين 2 ديوتريوم، وهيدروجين 3 ترِيتْيوم.

    وفي أغلب العناصر الأخف، تحتوي نواة كل ذرّة علي عدد متساوٍ من البروتونات والنيوترونات. بينما تحتوي نوى العناصر الأثقل على عدد من النيوترونات أكبر من عدد البروتونات. أما أثقل العناصر فبها نحو ثلاثة نيوترونات لكل اثنين من البروتونات. فاليورانيوم 238، مثلاً، به 146 نيوترونًا مقابل 92 بروتونًا في كل ذرة.


    الوزن الذري. هو وزن الذرّة معبَّرًا عنه بوحدات الكتلة الذرية. وتعادل وحدة الكتلة الذرية التي تُسمى أحيانًا دالتون 1/12 من وزن ذرة الكربون 12. ويكون الوزن الذرّي لأغلب الذرات مُعَبَّرًا عنه بالدالتون قريبًا جدًا من العدد الكتلي. ووحدات الكتلة الذرية بالغة الصغر فهناك 602 بليون ترِليون دالتون في كل جرام.

    ويُعيِّن العلماء الوزن الذري لعنصر متعدد النظائر بإيجاد متوسط الأوزان الذرية لهذه النظائر بنسب وجودها في الطبيعة. فيبلغ الوزن الذري لغاز الكلور، على سبيل المثال، 35,453 دالتون. وهذه القيمة هي متوسط الوزن الذري للنظيرين كلور 35 (وزنه الذري 34,96885) وكلور 37 (وزنه الذري 36,96590) حسب نسبة كل منهما في الطبيعة.


    الشحنة الكهربائية. رغم أن الذرة تكون عادة متعادلة كهربائيًا، إلا أنها قد تفقد أو تكتسب قليلاً من الإلكترونات في بعض التفاعلات الكيميائية أو عند اصطدامها بإلكترون أو بذرّة أخرى. وينتج عن هذا الفقد أو الاكتساب ذرة مشحونة كهربائيًا تُسمَّى بالأيون، وتصبح الذرة التي فقدت إلكترونات أيونًا موجبًا بينما تصبح الذرة التي اكتسبت إلكترونات أيونًا سالبًا. وتُسمَّى عملية الفقد أو الاكتساب هذه التأين.


    السلوك الكيميائي. يتحدد السلوك الكيميائي لذرة ما إلى حد بعيد بعدد الإلكترونات الموجودة في مدارها الخارجي. وعندما تتجمع الذرات لتكوِّن جزيئات، فإن الإلكترونات في المدارات الخارجية إما أن تنتقل من ذرة إلى أخرى أو تشارك فيها الذرات المختلفة. ويُعبَّر عن عدد الإلكترونات الداخلة في هذه العملية بالتكافؤ. ولذرات بعض العناصر أكثر من تكافؤ. ويعتمد ذلك على عدد ونوع الذرات التي سيتم التفاعل معها.

    ويكون تكافؤ الذرة موجبًا إذا كانت تميل لفقد إلكترونات لذرات أخرى. بينما يكون التكافؤ سالبًا إذا مالت الذرة إلى اكتساب إلكترونات من ذرات أخرى. فالصوديوم، على سبيل المثال، يميل لفقد إلكترون واحد وهكذا يصبح تكافؤه + 1. أما الكلور، فيميل لاكتساب إلكترون واحد وبهذا يصبح تكافؤه - 1.

    ويتكون جزيء ملح المائدة العادي من ذرة صوديوم واحدة مرتبطة بذرة كلور واحدة. وتعطي ذرة الصوديوم الإلكترون الذي تكتسبه ذرة الكلور.


    النشاط الإشعاعي. تستطيع النواة في بعض الذرّات أن تتغير بصورة طبيعية. وتُسمَّى مثل هذه الذرات نشطة إشعاعيًا. وقد يكون التَغيُّر في النواة قاصرًا فقط على تغير في ترتيب البروتونات والنيوترونات. وفي حالات أخرى، يتغير العدد الفعلي للبروتونات والنيوترونات. وعندما تتغير نواة فإنها تعطي إشعاعًا. ويتكون هذا الإشعاع من جُسَيمْات ألفا أو جُسيمات بيتا أو أشعة جاما. وذرات اليورانيوم والراديوم وكل العناصر الأخرى الأثقل من البزموت نشطة إشعاعيًا. كذلك، لبعض نظائر العناصر الأخف كالكربون نشاط إشعاعي. وبالإضافة إلى ذلك، يستطيع علماء الطبيعة تكوين نظائر مشعة لكل العناصر تقريبًا في المختبر وذلك بإطلاق بروتونات أو نيوترونات أو جُسَيمات تحت ذرية على ذرات هذه العناصر .

    ويعتمد نوع الإشعاع المنبعث من نواة نشيطة إشعاعيًا على طريقة تغيُّر النواة. فتنبعث أشعة جاما عندما يتغير فقط ترتيب البروتونات والنيوترونات في النواة. بينما تنبعث أشعة ألفا وبيتا عندما يتغير عدد البروتونات والنيوترونات في النواة، وتصبح الذرة حينئذ ذرة عنصر مغاير. تُسمَّى هذه العملية بتحول العناصر أو الانحلال الإشعاعي. انظر: النشاط الإشعاعي؛ تحول العناصر.


    القوى داخل الذرّة
    يتناول فرع الفيزياء المسمَّى بالميكانيكا الكمية مسألة القوى داخل الذرة وحركة الجسيمات تحت الذرية. وقد افُتتحت الدراسة في هذا الفرع من فروع الفيزياء في عام 1913م عندما استخدم عالم الفيزياء الدنماركي نيلز بور نظرية الكم لشرح حركة الإلكترونات داخل الذرات. وقام علماء فيزياء آخرون بتطوير ميكانيكا الكم، وطبقوا مبادئها على النواة والإلكترونات. انظر: ميكانيكا الكم.



    --------------------------------------------------------------------------------

    مستويات طاقة الإلكترونات داخل الذرةلا يستطيع أي إلكترون داخل الذرة الحصول على أي كمية من الطاقة. وبدلاً من ذلك فإنه مقيد بمجموعة من الحركات كل منها مرتبط بقيمة محددة من الطاقة. تسمى هذه الحركات بمستويات الطاقة أو الحالات الكمية.

    --------------------------------------------------------------------------------


    في الذرة أعلاه، يوجد الإلكترون في أكثر مستويات الطاقة انخفاضًا. يقول علماء الفيزياء عن مثل هذه الذرة: إِنها في حالة أرضية.


    يوفر تسخين الذرة طاقة كافية لرفع إلكترون إلى مستوى طاقة أعلى. ويقال عن الذرة حينئذ إنها في حالة الإثارة.


    يسقط الإلكترون في الحال تقريبًا إلى مستوى أدنى في الطاقة. ويقوم حينئذ بإطلاق طاقة على هيئة فوتون (جسيم ضوئي).


    مستويات طاقة الإلكترونات. حسب نظرية ميكانيكا الكم، لا تستطيع الإلكترونات أن تحصل علي أي كمية مفترضة من الطاقة. بدلاً من ذلك، فإن الإلكترونات مقيَّدة بمجموعة من الحركات كل منها مرتبط بقيمة محدَّدة من الطاقة. تُسمَّى هذه الحركات بالحالات الكمية أو مستويات الطاقة. فعندما يكون إلكترون في حالة كمية معينة، فإنه لا يمتص ولا يعطي طاقة. ولهذا السبب، فإن الذرة تستطيع أن تكتسب أو تفقد طاقة فقط عندما يغيِّر واحد أو أكثر من إلكتروناتها من حالته الكمية.

    وكما يبحث الماء دائمًا عن أقل مستوى ممكن، فإن الإلكترونات تبحث دائمًا عن الحالة المرتبطة بأقل طاقة. ومع ذلك، فإن أي حالة كمية لا يمكن أن تُشغل إلا بإلكترون واحد فقط. فعندما تمتلئ الحالات الكمية الأكثر انخفاضًا، فإن باقي الإلكترونات تُجبر على الانتقال لتشغل حالات كمية أعلى. فإذا كانت جميع الإلكترونات في أقل الحالات انخفاضًا فيُقال حينئذ: إن الذرة في الحالة الأرضية. وهذه الحالة طبيعية للذرات عند درجة الحرارة العادية.

    إذا سُخِّنت المادة إلى درجات حرارة أعلى من بضع مئات من الدرجات، تتوفر طاقة كافية لرفع إلكترون أو أكثر إلى مستوى طاقة أعلى. وتصبح الذرة حينئذ في حالة إثارة. ومع ذلك، فنادرًا ما تبقى هذه الذرة في حالة الإثارة لأكثر من جزء من الثانية. يسقط الإلكترون المثار فورًا إلى حالة أكثر انخفاضًا ويستمر في السقوط حتى تعود الذرة إلى الحالة الأرضية. وعند كل سقوط، يعطي الإلكترون قدرًا محددًا من الطاقة الإشعاعية المركزة يسمى بالفوتون. وتساوي طاقة الفوتون الفرق بين مستويين للطاقة. ويمكن كشف الفوتونات التي تعطيها الإلكترونات كضوء مرئي وكصور أخرى للإشعاع الكهرومغنطيسي.

    وقد شبّه بور، في بادئ الأمر، الحالات الكمية للإلكترونات بمدارات الكواكب حول الشمس. لكن علماء الطبيعة اليوم يعلمون أن هذا التشبيه غير صحيح؛ لأن الإلكترون ليس مجرد جسم بسيط. فللإلكترون أيضًا بعض خواص الموجات. وإنه حقًا لمن الصعب أن نتخيل كيف يكون شيء ما جُسَيْمًا وموجةً في الوقت نفسه. وتمثل هذه الصعوبة إحدى المشاكل التي واجهت العلماء وهم يحاولون وصف الذرة لغير العلماء. فللقيام بذلك، ينبغي أن يستخدم العلماء أفكارًا مألوفة مبنية على معرفتنا بالعالم الذي نلاحظه. لكن الظروف داخل الذرة الدقيقة تختلف كثيرًا جدًا عن الظروف التي نقابلها في عالم كل يوم. ولهذا السبب، يستطيع علماء الفيزياء وصف حركات الإلكترونات تمامًا وبدقة فقط باستخدام الرياضيات.


    القوى داخل النواة. تنطبق القواعد الكمية التي تحكم حركة الإلكترونات أيضًا على حركة البروتونات والنيوترونات داخل النواة. لكن القوة التي تحافظ على جسيمات النواة معًا تختلف كثيرًا عن قوة الجذب التي تمسك بالإلكترونات داخل الذرة.فكل جُسَيْم نووي ينجذب إلى أقرب جار له بما يُسمَّى بالقوة النووية أو ما يُسمَّى في بعض الأحيان بالتفاعل القويّ. ومن المعروف أن الشحنات المتماثلة تتنافر، لكن القوى النووية العظيمة تتغلب على التنافر المتبادل بين البروتونات موجبة الشحنة، وهكذا تحافظ على النواة من التفكك. وتتلاشى هذه القوة بسرعة مالم تكن جُسَيمات النواة شديدة التقارب فيما بينها. والإلكترونات محصَّنة ضد القوة النووية.

    والقوة النووية بالغة التعقيد، ولم يستطع العلماء بعد التوصل إلى وصف رياضي دقيق لها. وهناك نظرية تُعْرف بالنموذج المداري النووي تعطي تقديرات سليمة لمستويات الطاقة في النواة.

    ويستطيع بروتون واحد ونيوترون واحد أن يشغلا كل حالة كمية في النواة. ولهذا السبب فإن النواة الحقيقية يكون بها عدد متساو تقريبًا من البروتونات والنيوترونات. لكن البروتون والنيوترون الموجودان في نفس الحالة الكمية لا تتساوى كمية الطاقة الخاصة بكل منهما بالضرورة. ويُطْرد كل بروتون كهربائيًا بوساطة باقي البروتونات في النواة مما يزيد من طاقته.

    ويكون الاختلاف في مستويات الطاقة بين البروتونات محسوسًا في النواة متعددة البروتونات، كما تتوافر بها حالات طاقة منخفضة للنيوترونات أكثر مما تتوافر فيها للبروتونات. وتفسر هذه الحقيقة لماذا تحتوي النواة الثقيلة على عدد من النيوترونات يفوق عدد البروتونات.


    كيف يدرس العلماء الذرات

    مسارات صنعتها الجسيمات الذرية في معجل للجسيمات، وقد صُوِّرت على فيلم. يدرس الفيزيائيون هذه المسارات لمعرفة خواص الجسيمات التي أنتجتها.
    يستخدم العلماء أجهزة قياس وتقنيات متعددة لدراسة الذرات. وتعتمد الأجهزة والطرق المستخدمة على نوعية الدراسة، وهل هي دراسة للذرات نفسها، أو للإلكترونات، أو للجُسيمات النووية أو لجسيمات الكوارك.

    ويستخدم الباحثون الأشعة السينية لدراسة ترتيب الذرات في الأنماط العادية المتكررة كما في البلّورات. فعندما تمر الأشعة السينية خلال بلورة، فإن الذرات تكسر الأشعة السينية بطريقة معينة. تنتج هذه الأشعة المنكسرة أنماطًا ضوئية على فيلم فوتوغرافي تحكي مدى تباعد الذرات بعضها عن بعض، وكيف تنتظم داخل البلورة. وتمكِّن المجاهر الإلكترونية الماسحة والمجاهر الخندقية الماسحة وكذلك مجاهر انبعاث المجال العلماء من ملاحظة أوضاع الذرات المفردة.

    ويدرس العلماء حركة الإلكترونات أساسًا بوساطة تحليل الضوء المنبعث من ذرات الغازات المسخَّنة. ويُستخدم المطياف (مقياس الطيف) لتحليل الضوء إلى طَيْف. وهو يعطي خطًا منفصلاً لكل طول موجي من الضوء. ويرتبط كل طول موجي مع فَرْق الطاقة بين حالتين من الحالات الكمية في الذرة. وبعد تعيين الأطوال الموجية، يستطيع العلماء رسم بيان كامل عن مستويات الطاقة. ويستطيعون كذلك، بمساعدة الميكانيكا الكمية، الحصول على وصف لحركات الإلكترون داخل الذرة.

    وقد تم التوصل إلى معظم ما يعرفه العلماء اليوم عن تكوين النواة بوساطة التجارب التي أجريت باستخدام معجِّلات الجُسَيمات. تقوم هذه المعجِّلات بقذف النواة بشعاع من الإلكترونات أو البروتونات عالية الطاقة. وتستطيع البروتونات أو الإلكترونات المتحركة بسرعة التأثير في حركة الجسيمات في النواة، بل تستطيع في بعض الأحيان إطلاق سراحها. ويمكن في بعض التجارب، تحريك نواة بأكملها وجعلها تصطدم بنواة ساكنة أخرى. وقد تمكن علماء الفيزياء النووية من تطوير أنواع متعددة من الكواشف لملاحظة الجُسيمات التي تنطلق نتيجة لهذه التصادمات. ويقوم أغلب هذه الكواشف بإنتاج إشارة كهربائية عندما يمر خلالها جُسَيْم.


    تطور النظرية الذرية
    لقد نشأت فكرة تكوُّن كل شيء من أجزاء بسيطة صغيرة خلال القرن الخامس قبل الميلاد في نطاق الفلسفة الذرية. وقد قدم هذه الفلسفة الفيلسوف الإغريقي ليوسيبّوس. وقام تلميذه ديموقريطس بتطويرها بصورة أكمل. وأعطى ديموقريطس الجُسيم الأولي الاسم ذرة الذي يعني غير قابل للقطع. وقد تخيل الذرات كجسيمات صلبة صغيرة مركبة من نفس المادة، لكنها تختلف عن بعضها في الشكل والحجم. وقد أدخل العالم الإغريقي أبيقور في القرن الرابع قبل الميلاد أفكار ديموقريطس في فلسفته. وفي حوالي عام 50 ق.م. قدم الفيلسوف والشاعر الروماني لوكريشيس المباديء الأساسية للفلسفة الذرية في قصيدته: "عن طبيعة الأشياء". انظر: المذهب الذري.

    وفي العصور الوسطى حدث تجاهل تام لفكرة الذرات. وقد نتج هذا التجاهل بسبب رفض أرسطو، وهو أحد فلاسفة الإغريق، لهذه الفكرة حيث سادت فيه نظرياته مجالات الفلسفة والعلم في العصور الوسطى. لكن فكرة كون الذرات هي وحدات البناء الأساسية لكل المواد عاشت وانتعشت في القرنين السادس عشر والسابع عشر الميلاديين نتيجة لاعتناق مؤسسي العلم الحديث، أمثال فرانسيس بيكون وإسحق نيوتن من إنجلترا، وكذلك جاليليو من إيطاليا، لها. ولكنهم لم يضيفوا شيئًا يُذكر إلى النظرية الذرية التي وصفها ديموقريطس.


    --------------------------------------------------------------------------------

    نماذج الذرة خلال القرن العشرين اقترح علماء الفيزياء نماذج متباينة لتكوين الذرة. وتبين الأشكال البيانية أدناه أهم ثلاثة من النماذج الأولى بالإضافة إلى النموذج الحديث.

    --------------------------------------------------------------------------------


    نموذج طومسون اقترحه عالم الفيزياء البريطاني جوزيف جون طومسون في 1904م. ويبين إلكترونات مغموسة في كرة موجبة الشحنة- كانغماس البذور في قلب بطيخة.

    نمـوذج رذرفـورد وفيه يتـركز وزن الـذرة في نواة موجـبة الشحنة محاطة بإلكترونات. وقد اقترح عالم الفيزياء البريطاني إرنست رذرفورد هذا النموذج في 1911م.


    نمـــوذج بــــور اقـــترحـه عـالـم الفـــيزيـاء الـدانمـاركي نيـــلز بـور في 1913م. وقـد بــين بـــور أن الإلكــترونـات تـــدور في مـــدارات ثـابـــتة حـول الـــنواة.

    نموذج سحابة الإلكترونات تم قبوله حديثًا وهو يبين المناطق التي يمكن أن توجد بها الإلكترونات داخل الذرة. وتوجد الإلكترونات حيث تكون السحابة أكثر سوادًا.




    ميلاد النظرية الذرية الحديثة. في عام 1750م خرج العالم رودجر بُسْكوفتْش اليوغوسلافي المولد بفكرة مؤداها أن ديموقريطس ربما يكون قد أخطأ بتصوره أن الذرة غير قابلة للتفتت. واعتقد بُسْكوفتش أن الذرة تحتوي على أجزاء أصغر وهذه بدورها تحتوي أيضًا على أجزاء أصغر وأصغر وهكذا حتى وحدات البناء الأساسية للمادة. وشعر أن وحدات البناء هذه لابد أن تكون نقاطًا هندسية بلاحجم على الإطلاق. واليوم يعتنق أغلب علماء الذرة صورة حديثة لفكر بُسْكوفتش.

    حدث تقدم سريع في تطوير النظرية الذرية عندما أصبحت الكيمياء علمًا دقيقًا خلال أواخر القرن الثامن عشر. فقد اكتشف علماء الكيمياء أنه من الممكن تجميع العناصر لتكوين مركَّبات، وذلك بنسب محدَّدة مبنية على كتلة أي من هذه العناصر. وتمكن العالم البريطاني جون دالتون في عام 1803م من تطوير نظرية ذرية تفسر هذا الاكتشاف. فقد اقترح دالتون أن كل عنصر يتكون من نوع خاص من الذرات وأن اختلاف خواص العناصر ينجم عن اختلاف ذراتها. وذهب إلى أبعد من ذلك فقال: إن ذرات كل عنصر متماثلة تمامًا في الحجم والشكل والكتلة.

    وتبعًا لنظرية دالتون، فإن الذرات، عندما تتجمع لتكوِّن مركَّبًا معيَّنًا، تتجمع دائمًا وفق نسب عددية محدَّدة. وعلى هذا يصبح تركيب كتلة من مركب معين هو نفسه على الدوام.


    الأوصاف الأولى للتركيب الذري. في عام 1897م، اكتشف عالم الفيزياء البريطاني جوزيف طومسون أن الذرات قابلة للتفتت. وقد توصل إلى اكتشافه هذا عندما كان يدرس الأشعة التي تنتقل بين الألواح المعدنية في صمام مفرغ. وقرر أن هذه الأشعة تتكون من جُسيمات خفيفة الوزن سالبة الشحنة. وبهذا يكون قد اكتشف الإلكترونات. وتبين طومسون على الفور أن الإلكترونات لابد أن تكون جزءًا من الذرة. واقترح نموذجًا للذرة تنغمس فيه الإلكترونات سالبة الشحنة في كرة موجبة الشحنة. وبالرغم من أن وصف طومسون كان بعيدًا كل البعد عن الوصف الصحيح للذرة، فإن عمله شجَّع علماء آخرين على بحث هيكل الذرة.

    في عام 1911م قدَّم عالم الفيزياء البريطاني إرنِسْت رَذَرْفورد نظريته عن تكوين الذرة. فقد أعلن رذرفورد، وهو أحد تلاميذ طومسون السابقين، أن كل وزن الذرة تقريبًا مركَّزٌ في نواة دقيقة الحجم، وأن هذه النواة محاطة بإلكترونات تنتقل بسرعات بالغة الكبر خلال المنطقة الخارجية للذرة.

    وقد بنى رذرفورد نظريته على نتائج التجارب التي قام فيها بقذف شرائح رقيقة من الذهب بجسيمات ألفا. فقد نفذت أغلب الجُسيمات من الشرائح، مما بين أن ذرات الذهب لابد أن تكون مكونة أساسًا من فضاء فارغ. لكن بعض الجُسيمات ارتدت كما لو كانت قد اصطدمت بشيء صلب. واستخلص رذرفورد من ذلك أن هذه الجُسيمات المرتدة انعكست بفعل قوة عظيمة من النواة الصغيرة الثقيلة لذرة من ذرات الذهب.

    ولم تبين نظرية رذرفورد كيفية ترتيب الإلكترونات في الذرات. وفي عام 1913م اقترح العالم الدنماركي نيلز بور، الذي كان قد سبق له العمل مع رذرفورد، وصفًا لذلك. افترض بور أن الإلكترونات تنتقل فقط في مجموعة محدَّدة من المدارات حول النواة. ولم يكن افتراض بور الأوَّلي هذا مناسبًا، ولكن كثيرًا من الأفكار خلف هذا الافتراض ثبتت صحتها.

    وفي عام 1924م رأى العالم الفرنسي لوي دي بروجلي أن للإلكترونات خواص الموجات. وفي 1928م تم الحصول على وصف سليم لترتيب الإلكترونات بمساعدة علماء فيزياء آخرين وخصوصًا وولفجانج باولي وإيرفين شرودينجر النمساويين وماكس بورن وفرنر هيسينبرج الألمانيين.


    دراسة النواة. بالرغم من أن علماء الفيزياء (الطبيعة) فهموا حركة الإلكترونات بحلول عام 1928م، إلا أن النواة ظلت غامضة إلى حد كبير. وقد تم تشخيص البروتونات في عام 1902م. واعتقد رذرفورد في عام 1914م أن البروتونات لابد أن تكون جزءًا من النواة. وتبيَّن العلماء أن النواة لا يمكن أن تكون مكونة من بروتونات فقط. وفي 1932م اكتشف عالم الفيزياء البريطاني جيمس تشادْويك أن النواة تحتوي أيضًا على جُسيمات غير مشحونة سُمِّيت بالنيوترونات. كذلك طوّر العلماء في أوائل الثلاثينيات من القرن العشرين معجِّلات للجُسيمات قادرة على إنتاج طاقات عالية بدرجة كافية لدراسة النواة.

    لم يتوقع رواد الفيزياء النووية أن يروا في وقت قصير تطبيقًا علمياً لما لديهم من معرفة. لكن الباحثين اكتشفوا في عام 1938م أن قذف نواة ذرة اليورانيوم بنيوترون يسبب انشطارها إلى جزءين وإطلاق طاقة. وأطلقوا على هذه العملية الانشطار النووي. وجاء هذا الاكتشاف قبل اندلاع الحرب العالمية الثانية في عام 1939م بشهور قليلة، واستُخدم الانشطار النووي في القنابل النووية التي ساعدت على وضع نهاية لهذه الحرب في عام 1945م.

    وقد جعل تطوير الأسلحة النووية الحكومات تقف على أهمية تطوير الفيزياء النووية. نتيجة لهذا، رُصدت مبالغ طائلة من الأموال للأبحاث النووية بعد الحرب. كما كانت الاستخدامات السلمية للانشطار النووي محل اهتمام متزايد. ففي الخمسينيات من القرن العشرين، بدأ تشغيل أول محطة نووية لتوليد الطاقة الكهربائية بتحويل الطاقة الحرارية التي تنتج من الانشطار النووي للنظير يورانيوم 235.

    لكن سباق التسلح كان في الواقع السبب الرئيسي وراء الاهتمام البالغ بالأبحاث النووية. ففي أوائل الخمسينيات من القرن العشرين، بدأ العلماء في تطوير القنبلة الهيدروجينية. وتختلف في فكرتها عن القنبلة الذرية، فهي تعتمد على اتحاد ذرات الهيدروجين. وعملية اتحاد الذرات هي الفاعلة في إنتاج الحرارة والضوء في الشمس والنجوم الأخرى. وهي عملية من الصعب التحكم فيها. ولو كان في استطاعة العلماء التحكم في عملية اتحاد الذرات لاستطاعوا إنتاج طاقة حرارية أرخص كثيرًا من تلك التي تنتج من الانشطار النووي نظرًا لتوفر غاز الهيدروجين.

    وبعيدًا عن سباق التسلح، فإن الدراسة الأكاديمية للفيزياء النووية، وإنشاء معجِّلات الجسيمات متزايدة الحجم والطاقة أدَّت إلى زيادة معرفتنا بتفاصيل النواة.

    وقد تبين العلماء أن البروتون والنيوترون لا يمكن أن يكونا مجرد جُسيمات بسيطة. ووجدوا أيضًا أن النيوترون غير خال من الشحنات الكهربائية. بل تبينوا أنه يحتوي على كميات متساوية من الشحنات الموجبة والسالبة. كما اكتشف الباحثون مئات من الجسيمات الجديدة متشابهة جدًا، وكذلك للبروتونات والنيوترونات مما قاد لفكرة أن كل الجسيمات النووية مكونة من تنظيمات مختلفة لقليل من الأجزاء الصغيرة.


    اكتشافات حديثة. بحلول عام 1964م، توصل الباحثون إلى قرائن تدل على ماهية الأجزاء الأساسية المكونة للبروتونات والنيوترونات والجُسيمات النووية الأخرى. فقد طرح عالما الفيزياء الأمريكيان موراي جل ـ مان وجورج زفايج نظرية تصف هذه الأجزاء. وسمَّى جل ـ مان هذه الأجزاء بجسيمات الكوارك. وبيَّن علماء الفيزياء في عام 1971م أن هذه الجسيمات أصغر كثيرًا من البروتونات والنيوترونات.

    وقد قاد نجاح نظرية الكوارك إلى تقدم سريع في الفيزياء تحت الذرية. وظل صعبًا التوصل إلى وصف دقيق للقوة بين البروتونات والنيوترونات نظرًا لشدة تعقيد هذه الجُسيمات، ومع ذلك، فإن القوة التي تحتفظ بجسيمات الكوارك معًا أصبحت مفهومة تمامًا مما سيساعد علماء الفيزياء مستقبلاً في فهم القوة النووية. ويبقى السؤال ما إذا كانت جسيمات الكوارك هي وحدات البناء الأساسية النهائية للذرات. كثير من الأبحاث مخصص للإجابة عن هذا السؤال.





















    الكهرباء من الخصائص الأساسية للمادة المكونة لكل الأشياء في الكون. وعندما يسمع الناس كلمة كهرباء يتبادر إلى أذهانهم الضوء والتلفاز وفرن المايكرويف والحاسوب وغيرها من النبائط المفيدة. ولكن الكهرباء أهم من ذلك بكثير. فالكهرباء والمغنطيسية تكونان معًا قوة تسمى الكهرومغنطيسية، وهي من القوى الأساسية في الكون. والقوة الكهربائية مسؤولة عن إمساك الذرات والجزيئات المكونة للمادة معًا، وبهذه الطريقة تحدد الكهرباء تركيب وخصائص كل الموجودات.

    ترتبط الكهرباء أيضًا بالعديد من العمليات البيولوجية. ففي جسم الإنسان تنتقل الإشارات الكهربائية عبر الأعصاب، حاملة المعلومات من الدماغ وإليه، حيث تساعد هذه الإشارات الدماغ على تحديد ما تراه العين، وتسمعه الأذن، وتتحسسه الأصابع. وهذه الإشارات هي التي تسبب حركة العضلات ونبض القلب، كما تنظم معدل النبض.

    ومن أهم خصائص الكهرباء الطاقة الكهربائية. فقد استطاع الناس خلال القرن التاسع عشر تسخير الكهرباء لأداء الأعمال. وكان لهذا المصدر الجديد للطاقة تطبيقات عملية كثيرة، ساهمت كثيرًا في تغيير حياة الناس، حيث تمكن المخترعون والعلماء من توليد الطاقة الكهربائية بكميات كبيرة، واكتشفوا طرق استخدام هذه الطاقة في إنتاج الضوء والحرارة والحركة، وصمموا نبائط كهربائية مكنت الناس من الاتصال عبر المسافات البعيدة، ومعالجة المعلومات بسرعة فائقة. وقد ازداد الطلب على الكهرباء خلال القرن العشرين إلى درجة أن الناس اليوم لايستطيعون تخيل شكل الحياة في حالة عدم وجود الطاقة الكهربائية.

    تناقش هذه المقالة المبادئ الأساسية للكهرباء. وللحصول على معلومات حول كيفية إنتاج الكهرباء ونقلها تجاريًا انظر : المولد الكهربائي؛ القدرة الكهربائية. وللتعرف على بعض القوانين البسيطة التي تحكم سلامة استخدام الكهرباء انظر: سلامة كهربائية (السلامة مع الكهرباء) في هذه المقالة.


    --------------------------------------------------------------------------------

    مصطلحات تستخدم في الكهرباء

    --------------------------------------------------------------------------------

    الإلكترون جسيم تحت ذري يحمل شحنة كهربائية سالبة.
    الأمبير هو الوحدة المستخدمة في قياس معدل سريان التيار الكهربائي.
    الأوم هو الوحدة المستخدمة في قياس مقاومة مادة ما لسريان التيار الكهربائي.
    الأيون ذرة أو مجموعة ذرات اكتسبت إلكترونات أو فقدتها، واكتسبت بذلك شحنة كهربائية.
    البروتون جسيم تحت ذري يحمل شحنة كهربائية موجبة.
    التيار الكهربائي هو سريان الشحنات الكهربائية.
    الدائرة الكهربائية هي المسار الذي يتبعه التيار الكهربائي.
    الشحنة الكهربائية خاصية أساسية لجسيمات مادية معينة، تجعلها تجذب الجسيمات المشحونة الأخرى أو تتنافر معها.
    العازل مادة تقاوم سريان التيار الكهربائي.
    الفولتية نوع من "الضغط" يدفع الشحنات الكهربائية عبر دائرة.
    القطب الكهربائي قطعة من فلز أو أي موصل آخر يدخل عبره التيار إلى نبيطة كهربائية، أو يخرج منها.
    الكهرباء الساكنة هي الشحنة الكهربائية غير المتحركة.
    الكهرومغنطيسية قوة أساسية في الكون تشتمل على كل من الكهرباء والمغنطيسية.
    الكيلواط-ساعة هو كمية الطاقة الكهربائية التي تستهلكها نبيطة قدرتها 1,000 واط في ساعة واحدة.
    المجال الكهربائي هو تأثير الجسم المشحون على الحيز المحيط به، والذي يؤدي إلى اكتساب الأجسام المشحونة الأخرى في الحيز قوى كهربائية.
    المقاومة هو اعتراض مادة ما لسريان التيار الكهربائي.
    الموصل مادة يسري التيار الكهربائي عبرها بسهولة.
    النيوترون جسيم تحت ذري لا يحمل شحنة كهربائية.
    الواط هو الوحدة المستخدمة في قياس معدل استهلاك الطاقة، بما في ذلك الطاقة الكهربائية.




    استخدامات الطاقة الكهربائية
    تعتمد معظم مناحي حياتنا على الطاقة الكهربائية، حيث يستخدم سكان الدول الصناعية الكثير من النبائط التي تدار بالكهرباء كل يوم. ومن أهم هذه النبائط الحاسوب، الذي يستخدم الطاقة الكهربائية في معالجة المعلومات. فقد غيرت الحواسيب حياتنا داخل منازلنا ومدارسنا وأماكن أعمالنا.



    الأجهزة المنزلية
    في المنازل. توفر الأدوات الكهربائية مثل غاسلات الأطباق والمحامص والمكانس والغسالات الكهربائية الكثير من الوقت والجهد. وتساعد أجهزة الطبخ الكهربائية وأفران المايكرويف ومعالجات الطعام في تحضير الوجبات بسرعة وسهولة، كما تحفظ الثلاجات والمجمِّدات الطعام. وتبرِّد المكيفات والمراوح الكهربائية منازلنا، بينما توفر السخانات الكهربائية الدفء والماء الساخن. ويتيح التلفاز والراديو وألعاب الفيديو وحاكيات القرص المدمج ومسجلات شريط الفيديو فرص التسلية. ويمكننا الضوء الكهربائي من الاستفادة من ساعات الليل.






    أنبوب انسياق لمعُجل جُسيمات
    في الصناعة. لولا الكهرباء لما كان للصناعة الحديثة وجود. فالمصانع تنتج الكثير من المنتجات على خطوط التجميع، باستخدام الأحزمة الناقلة التي تعمل بالكهرباء والمعدات الكهربائية. ويستخدم المصنعون الأجهزة الكهربائية لضبط أحجام المنتجات ونوعياتها. وتعمل المثقابات والمناشير والعديد من الأدوات الصغيرة بالطاقة الكهربائية. وتدير المحركات الكهربائية المصاعد والروافع وغيرها من المعدات الكبيرة.





    كاميرا التلفاز
    في الاتصالات. تعمل كل النبائط التي يستخدمها الناس في الاتصالات تقريبًا بالطاقة الكهربائية. فالهواتف والتلفازات والراديوهات وأجهزة الفاكس والمودمات الحاسوبية تعمل كلها بالطاقة الكهربائية. وتستخدم أقمار الاتصالات الطاقة الكهربائية التي تولدها نبائط تسمى الخلايا الشمسية، لنقل المعلومات إلى كل أنحاء العالم. والإشارات التلفازية والراديوية إشارات كهربائية جزئيًا، وكذلك الإشارات الهاتفية والحاسوبية والفاكسية، التي تنتقل عبر أسلاك أو جدائل رقيقة من الزجاج تسمى الألياف البصرية.






    القطار الكهربائي
    في المواصلات. توفر الطاقة الكهربائية القدرة اللازمة لتحريك القطارات وعربات الترام التي تنقل ملايين الناس إلى أعمالهم ومنها إلى منازلهم. وتستخدم معظم السيارات الشرارة الكهربائية لقدح البترول الذي يوفر قدرة تشغيل المحرك. وتساعد النبائط الكهربائية في تقليل استهلاك المحركات البترولية للوقود وتلويثها للهواء. وتدار العديد من أجهزة الضبط في الطائرات والسفن بالكهرباء.






    لحام السيارات بالربوت
    في الطب والعلوم. يستخدم العاملون في مجال العناية الصحية أجهزة كهربائية عديدة لفحص المرضى وإجراء الاختبارات الطبية. فأجهزة الأشعة السينية وأجهزة التصوير بالرنين المغنطيسي، على سبيل المثال، تمكن الأطباء من رؤية أجهزة الجسم الداخلية. وتسجل مرسمات كهربائية القلب الإشارات الكهربائية الدقيقة الصادرة عن القلب، مما يساعد الأطباء على تشخيص أمراض القلب.

    ويستخدم العلماء في المجالات العلمية كافة النبائط الكهربائية في إجراء البحوث. فعلماء الأحياء الدقيقة، على سبيل المثال، يستخدمون جهازًا قويًا يسمى المجهر الإلكتروني المسحي لدراسة أسرار الخلايا الحية.

    ويستخدم الفيزيائيون معجلات الجسيمات التي تدار بالكهرباء لفحص التركيب الداخلي للذرات. وتساعد التلسكوبات الضخمة التي تدار بالكهرباء الفلكيين في دراسة الكواكب والنجوم والمجرات.


    الشحنة الكهربائية
    تتكون كل المواد في الكون، من جسم الإنسان إلى النجوم البعيدة، من نوعين من الجسيمات الدقيقة هما الإلكترونات والكواركات. وتكوِّن الكواركات بدورها جسيمات أكبر، تنقسم إلى نوعين هما البروتونات والنيوترونات. وللإلكترونات والكواركات خاصية تسمى الشحنة الكهربائية، حيث تحمل الإلكترونات نوعًا من الشحنات يسمى الشحنة السالبة، بينما تحمل الكواركات إما الشحنات السالبة أو النوع الآخر من الشحنات الذي يسمى الشحنة الموجبة. وتساوي الشحنة الموجبة على البروتون الشحنة السالبة على الإلكترون، وذلك لأن البروتون يحتوي على كواركين يحمل كل منهما ثلثي وحدة شحنة موجبة، وكوارك يحمل ثلث وحدة شحنة سالبة. أما النيوترون فيحتوي على كواركين يحمل كل منهما ثلث وحدة شحنة سالبة وكوارك يحمل ثلثي وحدة شحنة موجبة. وتلغي الشحنات بعضها بعضًا لأن إجمالي الشحنة الموجبة على النيوترون يساوي إجمالي الشحنة السالبة. ولذلك يقال أن النيوترون متعادل كهربائيًا، أي لايحمل شحنة كهربائية إجمالية.

    والشحنات المتضادة، أو غير المتشابهة ـ السالبة والموجبة ـ تتجاذب، بينما تتنافر الشحنات المتشابهة ـ الموجبة والموجبة أو السالبة والسالبة. وتنتج قوة التجاذب أو التنافر بين الشحنات عن قوى غير مرئية تسمى المجالات الكهربائية، تحيط بكل جسيم مشحون. وبسبب وجود المجالات، تتجاذب الجسيمات المشحونة أو تتنافر، حتى عندما تكون غير متلامسة.



    تتحول الذرة إلى أيون عندما تكتسب أو تفقد إلكترونًا، وتكتسب بذلك شحنة كهربائية. وتحتوي الذرة العادية (إلى اليسار) على عدد مساو من البروتونات الموجبة والإلكترونات السالبة. وإذا فقدت إلكترونًا (إلى اليمين) تتحول إلى أيون موجب الشحنة.
    الذرات. تتحد الكواركات لتكوين البروتونات والنيوترونات. وتتحد البروتونات والنيوترونات بدروها مع الإلكترونات لتكوين الذرات. وفي الذرة تترابط النيوترونات والبروتونات لتكوين لب دقيق يسمى النواة.

    وتجذب النواة الموجبة الشحنة في الذرة الإلكترونات السالبة الشحنة. والنواة موجبة الشحنة لأنها تحتوي على بروتونات، ولا تحتوي على إلكترونات. وتدور الإلكترونات السالبة حول النواة الموجبة فيما يشبه دوران الكواكب حول الشمس.

    ولكل نوع من الذرات عدد مختلف من البروتونات. فالهيدروجين، على سبيل المثال، وهو أبسط الذرات، يحتوي على بروتون واحد في النواة، بينما تحتوي ذرة الأكسجين على 8 بروتونات، والحديد على 26 بروتونًا، واليورانيوم على 92 بروتونًا. وتحتوي الذرة عادة على عدد مساو من البروتونات والإلكترونات. ونتيجة لذلك، تلغي الشحنات السالبة للإلكترونات الشحنات الموجبة للبروتونات، وتصبح الذرة متعادلة كهربائيًا.


    الأيونات. تفقد الذرة أو تكتسب أحيانًا إلكترونًا واحدًا أو أكثر. فإذا اكتسبت إلكترونًا تصبح الذرة سالبة الشحنة، بينما تصبح موجبة الشحنة إذا فقدت إلكترونًا. وتسمى الذرات التي تحمل شحنة كهربائية الأيونات. ومعظم الأيونات موجبة الشحنة، ولذلك تعني كلمة أيون، عندما تستخدم بمفردها، الذرة التي فقدت إلكترونًا واحدًا أو أكثر. وتتجاذب الأيونات الموجبة والسالبة، ويمكنها أن تتحد لتكوين المواد الصلبة. فملح الطعام العادي، على سبيل المثال، يتكون من الصوديوم والكلور. وفيه تفقد كل ذرة من ذرات الصوديوم إلكترونًا لتكوين أيون صوديوم موجب. وتتلقى كل ذرة من ذرات الكلور هذا الإلكترون لتكوين أيون كلوريد سالب. وبسبب قوة الجذب الكهربائي بين الأيونات يكون ملح الطعام صلبًا، ودرجة انصهاره عالية.


    الجزيئات. تتقاسم الذرات المتعادلة الإلكترونات مع غيرها من الذرات. وتكون الذرات التي تتقاسم الإلكترونات منجذبة بعضها نحو بعض. ويجعل هذا التجاذب الذرات مرتبطة بعضها ببعض لتكوين جزيئات. فعلى سبيل المثال، يمكن أن تتقاسم ذرتا هيدروجين الإلكترونات مع ذرة أكسجين لتكوين جزئ ماء. وتميل الإلكترونات إلى البقاء قرب ذرة الأكسجين معظم الوقت، مما يعطيها شحنة كهربائية سالبة. وتكتسب ذرتا الهيدروجين شحنتين موجبتين. وتمسك قوة الجذب الكهربائي بين هذه الذرات المشحونة جزئ الماء في حالة ترابط.


    الكهرباء الساكنة. في بعض الأحيان يفقد عدد كبير من ذرات جسم ما الإلكترونات أو يكتسبها. وعندما يحدث مثل هذا الفقدان أو الاكتساب يكتسب الجسم كله شحنة كهربائية. ويصف مصطلح الكهرباء الساكنة الأوضاع التي تحمل فيها الأجسام شحنة كهربائية.

    تحدث الكهرباء الساكنة، على سبيل المثال، عندما تفرك قميصك ببالون، حيث يسبب احتكاك البالون بالقميص انتقال الإلكترونات من القميص إلى البالون، مما يؤدي إلى اكتساب القميص لشحنة كلية موجبة، نظرًا لاحتوائها على عدد من البروتونات أكبر من الإلكترونات، واكتساب البالون لشحنة كلية سالبة لاحتوائها على إلكترونات زائدة. ولذلك يلتصق البالون بالقميص أو بأي سطح آخر مثل الجدار.

    ويشبه ذلك ما يحدث عندما تمشي فوق سجاد في يوم جاف، حيث يؤدي الاحتكاك بين حذائك والسجاد إلى انتقال الإلكترونات من جسمك إلى السجاد، معطيًا جسمك شحنة كهربائية موجبة. وعندما تلمس مقبض الباب أو أي جسم فلزي آخر، تقفز الإلكترونات من الجسم الفلزي إلى جسمك، وحينئذ قد تشاهد شرارة وتحس بصدمة خفيفة.

    وينتج البرق عن الكهرباء الساكنة. فالعلماء يعتقدون أن قطرات المطر المحمولة في رياح السحب البرقية تكوِّن شحنات كهربائية، حيث تصبح أجزاء من السحاب مشحونة بشحنة موجبة، بينما تصبح أجزاء أخرى مشحونة بشحنة سالبة. وقد تقفز الشحنات بين أجزاء السحاب المختلفة، أو من السحاب إلى الأرض، مما يؤدي إلى توليد الشرارة الكهربائية الضخمة التي نسميها البرق.

    وللكهرباء الساكنة استخدامات عديدة في المنازل والمؤسسات والمصانع. فأجهزة النسخ التي نراها في المكاتب، على سبيل المثال، ناسخات كهروستاتية، تصنع نسخًا من المادة المطبوعة أو المكتوبة بجذب جسيمات التونر (الحبر المسحوق) إلى الورقة الموجبة الشحنة. وتستخدم الكهرباء الساكنة أيضًا في المنظفات الهوائية المسماة المرسِّبات الكهروستاتية. فهذه النبائط تشحن جسيمات الغبار والدخان والبكتيريا وحبوب اللقاح في الهواء بشحنات كهربائية موجبة. وتنقي ألواح تجميع سالبة الشحنة الهواء بجذب هذه الجسيمات الموجبة الشحنة إلى داخل المنظف.


    الموصلات والعوازل
    تنتقل الشحنات الكهربائية عبر بعض المواد بدرجة أفضل من انتقالها عبر مواد أخرى، حيث تنتقل بسهولة عبر مواد تسمى الموصلات. وتقاوم مواد تسمى العوازل انتقال الشحنات الكهربائية.




    التيار الكهربائي في الفلزات
    الموصلات. تحتوي المواد الموصلة للكهرباء على جسيمات مشحونة تتحرك بحرية عبر المادة. وعند تطبيق شحنة كهربائية إضافية على الموصل تنتشر الجسيمات المشحونة على سطح المادة. والجسيمات الحرة في معظم الموصلات إلكترونات غير مرتبطة بالذرات، وأيونات في موصلات أخرى.

    والفلزات موصلات جيدة لأنها تحتوي على عدد كبير من الإلكترونات الحرة، ولذلك تصنع معظم الأسلاك المستخدمة في نقل الطاقة الكهربائية من الفلزات، وخاصة النحاس. وبعض السوائل أيضًا موصلات. فالماء المالح، على سبيل المثال، موصل للكهرباء لأنه يحتوي على أيونات صوديوم وكلوريد حرة الحركة داخل السائل.

    وبعض الغازات أيضًا موصلات. ففي حالة تسخين غاز ما إلى درجات عالية تتحرك ذراته بسرعة عالية تؤدي إلى تصادمها، بعضها ببعض، بشدة، مما يجعل الإلكترونات تنفلت منها، وعندئذ يتحول الغاز إلى نوع من الموصلات الكهربائية يسمى البلازما. ومن أمثلة البلازما الغاز الساخن المتوهج داخل المصباح الفلوري، والغازات الساخنة التي تكوِّن الشمس والنجوم الأخرى.

    وفي معظم الموصلات تتصادم الإلكترونات المتحركة مع الذرات باستمرار، وتفقد الطاقة، ولكنها تتحرك بحرية تامة، ولا تفقد أي طاقة، في بعض المواد التي تسمى الموصلات الفائقة. وتتطلب الموصلات الفائقة درجات منخفضة جدًا لتؤدي وظيفة توصيل الكهرباء، ولذلك يستخدم هذا النوع من الموصلات في بعض الحالات الخاصة، وقد يستخدم في المستقبل في صناعة المحركات ذات الكفاءة العالية والمولدات وخطوط القدرة.


    العوازل. في العوازل تكون الإلكترونات مرتبطة بإحكام بذراتها، ولا تستطيع التحرك بحرية. وعند تطبيق شحنة كهربائية إضافية على العازل تبقى الشحنة في مكانها، ولا تتحرك عبر المادة. ومن أمثلة العوازل الزجاج والمطاط والبلاستيك والهواء العادي الجاف.

    والعوازل مهمة في السلامة الكهربائية، حيث تصنع معظم الحبال الكهربائية من مادة موصلة مغطاة بمادة عازلة مثل المطاط أو البلاستيك. ويستطيع الشخص لمس الحبل المغطى بالمادة العازلة حتى في حالة اتصال الحبل بمأخذ التيار.


    أشباه الموصلات. توصل بعض المواد الشحنة الكهربائية أفضل من العوازل، ولكن ليس بمستوى الموصلات. وتسمى هذه المواد أشباه الموصلات، ومن أكثرها استخدامًا السليكون. وبإضافة كميات صغيرة من مواد أخرى إلى شبه الموصل يستطيع المهندسون ضبط قدرتها على توصيل الشحنة الكهربائية. وأشباه الموصلات مهمة في تشغيل الحواسيب والآلات الحاسبة وأجهزة الراديو والتلفاز وألعاب الفيديو ونبائط أخرى عديدة.


    المقاومة. تعني اعتراض المادة لمرور الشحنات الكهربائية عبرها. وتحدث المقاومة عندما تصطدم الإلكترونات المتحركة في المادة بالذرات، وتطلق طاقة في شكل حرارة. والموصلات الجيدة، مثل النحاس، ضعيفة المقاومة، مقارنة بأشباه الموصلات، مثل السليكون. أما العوازل، مثل الزجاج والخشب، فذات مقاومة عالية جدًا، يصعب معها مرور الشحنات الكهربائية عبرها. ولا تشكل الموصلات الفائقة أي مقاومة لمرور الشحنات عبرها.

    ولا تتوقف المقاومة على نوع المادة فحسب، بل على حجمها وشكلها أيضًا. فالسلك النحاسي الرقيق، على سبيل المثال، أكثر مقاومة من السلك السميك، والسلك الطويل أكثر مقاومة من السلك القصير. وقد تتفاوت مقاومة المادة أيضًا حسب درجة الحرارة.


    التيار الكهربائي
    يسمى سريان الشحنة الكهربائية عبر موصل التيار الكهربائي تيارًا كهربائيًا. وترتبط الطاقة بسريان التيار. فعند مرور التيار عبر نبيطة كهربائية تحوَّل الطاقة الكهربائية إلى أشكال مفيدة. فهي مثلاً تحول إلى حرارة في جهاز الطبخ الكهربائي، وإلى ضوء في المصباح الكهربائي.



    مصباح متوهِّج
    التيار المستمر والتيار المتناوب. يسمى التيار الذي يسري باستمرار في اتجاه واحد التيار المستمر، ومن أمثلته التيار الذي تنتجه البطارية. ويسري التيار أحيانًا إلى الأمام ثم إلى الخلف، مغيرًا اتجاهه بسرعة، ويسمى هذا النوع من التيار التيار المتناوب، ومن أمثلته التيار الذي يسري إلى المنازل. ففي بعض الدول يغير تيار المنازل اتجاهه مائة مرة في الثانية، مكملاً بذلك 50 دورة كاملة. وفي دول أخرى يغير التيار اتجاهه 120 مرة في الثانية، مكملاً 60 دورة كاملة.


    مصادر التيار. لا يحمل الموصل في حد ذاته أي تيار كهربائي، ولكن عند تطبيق شحنة موجبة على أحد طرفيه، وشحنة سالبة على طرفه الآخر، تسري شحنة كهربائية عبر الموصل. ولأن الشحنات المتضادة تتجاذب، يتحتم استخدام نوع من الطاقة للفصل بين الشحنات، وحصرها في طرفي الموصل. ويمكن الحصول على هذه الطاقة من التفاعلات الكيميائية أو الحركة أو ضوء الشمس أو الحرارة.

    البطاريات. تنتج البطاريات الطاقة الكهربائية من التفاعلات الكيميائية. ولكل بطارية تركيبان يسميان القطبين، يصنع كل منهما من مادة مختلفة فاعلة كيميائيًا. وبين القطبين تحتوي البطارية على سائل (أو عجينة) موصل للتيار الكهربائي، يسمى الإلكتروليت، يساعد في إحداث تفاعل كيميائي عند كل قطب. ونتيجة للتفاعلات عند القطبين يكتسب أحد القطبين شحنة موجبة، بينما يكتسب القطب الآخر شحنة سالبة، وعندئذ يسري التيار الكهربائي من القطب الموجب، عبر الموصل، إلى القطب السالب.

    والطرف المسطح في بطارية الكشاف الضوئي هو القطب السالب، بينما يتصل الطرف المزود بنتوء بالقطب الموجب. ويسري التيار عند وصل القطبين بسلك، حيث يمكن تحويل الطاقة الكهربائية إلى ضوء بإمرار التيار عبر مصباح كهربائي صغير. وتبقي التفاعلات الكيميائية في الإلكتروليت القطبين مشحونين بشحنتين متضادتين، وبذلك تحافظ على استمرار سريان التيار.

    وفي النهاية تنفد الطاقة الكيميائية، وتصبح البطارية غير قادرة على إنتاج الطاقة الكهربائية. وتُلقى بعض البطاريات بعد استكمال طاقتها، ولكن بعضها يمكن إعادة شحنها بإمرار التيار الكهربائي عليها، وتسمى البطاريات القابلة للشحن.

    المولدات. تغير المولدات الطاقة الميكانيكية إلى طاقة كهربائية. يحرك مصدر طاقة ميكانيكية في المولد ملفات سلكية بالقرب من مغنطيس لإنتاج تيار كهربائي، حيث يعمل المولد بمبدأ توليد تيار كهربائي في موصل بتحريك الموصل قرب مغنطيس. وتنتج معظم المولدات تيارًا متناوبًا.

    توفر المولدات معظم الطاقة الكهربائية التي يستخدمها الناس. ففي السيارة، يدير المحرك مولدًا صغيرًا يسمى المنوِّب، لإنتاج الطاقة الكهربائية اللازمة لإعادة شحن بطارية السيارة. وبإمكان مولد كبير في محطة قدرة كهربائية إنتاج طاقة كهربائية تكفي مدينة يقطنها مليونا شخص. ويصل التيار الكهربائي الناتج عن المولد إلى المنازل والمصانع والمكاتب عبر شبكات ضخمة من خطوط القدرة الكهربائية.

    الخلايا الشمسية. تحول الخلايا الشمسية، والتي تسمى أيضًا الخلايا الفولتية الضوئية، ضوء الشمس إلى طاقة كهربائية. وهي تمد معظم الأقمار الصناعية، وغيرها من المركبات الفضائية، وكذلك بعض الآلات الحاسبة، بالقدرة. وتصنع الخلايا الشمسية من أشباه الموصلات، وخاصة السليكون المعالج بطريقة خاصة، حيث تؤدي الطاقة المأخوذة من الشمس إلى انفصال الشحنات السالبة والموجبة في شبه الموصل، ومن ثم تسري الشحنات في موصل.

    البلورات الكهروإجهادية. البلورة الكهروإجهادية معدن لافلزي يكتسب شحنة كهربائية على سطحه عند تمديده أو ضغطه. وتستخدم البلورات الكهروإجهادية في بعض الميكروفونات لتحويل الطاقة الصوتية إلى طاقة كهربائية تستخدم في أغراض التسجيل والبث الإذاعي. وتستخدم معظم أجهزة الطبخ الحديثة البلورات الكهروإجهادية لإنتاج الشرارة الكهربائية التي تشعل الغاز. وأكثر البلورات الكهروإجهادية استخدامًا الكوارتز.


    الدوائر الكهربائية

    الدائرة الكهربائية هي المسار الذي يتبعه التيار الكهربائي بين نبيطة مثل المصباح الضوئي ومصدر طاقة مثل البطارية. وعندما يكون المفتاح الكهربائي مفتوحًا تفصل فجوة بين الأسلاك الموصلة، ولا يستطيع التيار إكمال مساره.
    لاستخدام الطاقة الكهربائية توصل النبيطة الكهربائية بمصدر الطاقة، ويبنى مسار مكتمل للتيار الكهربائي، ليسري من مصدر الطاقة إلى النبيطة، ثم يعود مرة أخرى إلى المصدر. ويسمى هذا المسار الدائرة الكهربائية.


    الدائرة البسيطة. افترض أنك تريد أن تولد إضاءة في مصباح كهربائي صغير باستخدام بطارية. سوف لن يمر التيار الكهربائي إلا في حالة إيجاد دائرة كاملة لسريان التيار من البطارية إلى المصباح ومنه إلى البطارية. ولتكوين هذه الدائرة، صل المصباح بالطرف الموجب للبطارية بسلك، ثم صل الطرف السالب للبطارية أيضًا بالمصباح بسلك. سوف يسري التيار عندئذ من الطرف الموجب للبطارية، عبر المصباح، إلى الطرف السالب.

    يوجد في داخل المصباح الكهربائي سلك يسمى الفتيلة، يصنع من مادة ذات مقاومة أعلى من مقاومة السلكين الموصلين بين المصباح والبطارية. وتصطدم الإلكترونات المكونة للتيار بذرات الفتيلة، وتطلق معظم طاقاتها. وتسخن هذه الطاقة الفتيلة، التي تتوهج وتبعث الضوء.


    الدوائر المتوالية والدوائر المتوازية. توفر البطارية أو المولد القدرة عادة لأكثر من نبيطة كهربائية. وفي مثل هذه الحالات تستخدم تصاميم دوائر تسمى الدوائر المتوالية والدوائر المتوازية. وللدائرة المتوالية مسار واحد، حيث يسري نفس التيار عبر كل أجزاء المسار وكل النبائط الكهربائية الموصلة إليه. وتستخدم الدوائر المتوالية في الكشافات الضوئية وبعض أضواء شجرة عيد الميلاد ونبائط أخرى بسيطة. وفي الدوائر المتوازية ينقسم التيار ليسري عبر مسارين أو أكثر. وتمكن هذه الدوائر مصدر الطاقة من مد نبائط كهربائية كثيرة بالتيار، مقارنة بالدوائر المتوالية. ولذلك توصل المصابيح والأجهزة الكهربائية في المنازل على التوازي.

    وتحتوي معظم الدوائر الكهربائية على كلا نوعي الدوائر، كما تحتوي بعض الدوائر المعقدة جدًا، مثل دوائر الحاسوب أو التلفاز، على ملايين الأجزاء الموصلة بتوليفات متنوعة من الدوائر المتوالية والدوائر المتوازية.


    المجالات الكهربائية والمغنطيسية. عندما يتذكر الناس التيار الكهربائي يتبادر إلى أذهانهم الإلكترونات التي تحمل الشحنات عبر الأسلاك. وفي الواقع، تسري معظم الطاقة عبر المجالات الكهربائية والمغنطيسية المحيطة بالأسلاك. وتدخل هذه الطاقة إلى السلك، وتحل محل الطاقة التي تفقدها الإلكترونات للتغلب على المقاومة. وتعوض البطارية أو المولد أو أي مصدر طاقة آخر الطاقة المفقودة من المجالات باستمرار.

    وفي دوائر التيار المستمر تسري الإلكترونات من أحد طرفي البطارية، عبر الدائرة، إلى الطرف الآخر. ولكن طاقة المجالين الكهربائي والمغنطيسي تسري في نفس الوقت من كلا الطرفين إلى النبيطة الكهربائية. وفي دوائر التيار المتناوب تتحرك الإلكترونات المفردة في السلك إلى الأمام ثم إلى الخلف، ولا تنتقل عبر الدائرة كلها. وبالرغم من ذلك تسري الطاقة الكهربائية من مصدر الطاقة إلى النبيطة في شكل مجالين كهربائي ومغنطيسي.




    تأثيرات الكهرباء
    التحكم في التيار الكهربائي. المفتاح الكهربائي هو أبسط وسائل إيقاف التيار المار عبر دائرة، ويتكون من موصلين كهربائيين، يمكن المباعدة بينهما لتكوين فجوة في الدائرة. فعند غلق المفتاح تنفتح الفجوة، ويتوقف مرور التيار. وعند فتح المفتاح يتصل الموصلان ويسري التيار.

    وتصبح الأسلاك والنبائط الكهربائية ساخنة إلى درجة الخطورة في حالة مرور كمية كبيرة من التيار عبرها. وتحمي مفاتيح تسمى الصهائر والقواطع الكهربائية التوصيلات في معظم الأبنية، حيث تقطع الصهيرة أو القاطع الكهربائي التيار عندما يكون عدد كبير من النبائط الكهربائية موصلاً إلى مأخذ التيار. وتحتوي العديد من النبائط الكهربائية أيضًا على صهائر.

    وفي بعض الأحيان يحتاج الناس تغيير قوة التيار بدلاً من مجرد قطعه أو وصله. ومن طرق ضبط قوة التيار تغيير المقاومة داخل الدائرة. فعلى سبيل المثال، تؤدي إدارة مقبض الصوت في المذياع إلى تشغيل مقاوم متغير، حيث تضبط هذه النبيطة مقاومة سريان التيار عبر المذياع، وترفع بذلك الصوت أو تخفضه.

    ولا تستطيع المفاتيح والمقاومات المتغيرة تغيير التيار بسرعة، ولذلك تستخدم نبائط شبه موصلة دقيقة تسمى الترانزستورات، لضبط التيار بسرعة أكبر، حيث تقطع الترانزستورات التيار وتصله بلايين المرات في الثانية الواحدة. وتحتوي بعض النبائط على ملايين الترانزستورات في رقاقة دقيقة واحدة من السليكون تسمى الدائرة المتكاملة، أو باختصار الرقاقة. وتشكل الدوائر المتكاملة منطقة القلب في الحواسيب والآلات الحاسبة وألعاب الفيديو والعديد من النبائط الأخرى.

    ويقال عن النبائط التي تدار بالكهرباء إنها إلكترونية إذا كانت تحمل إشارات كهربائية يمكن تغييرها بطريقة أو أخرى لتمثيل المعلومات. وتشمل النبائط الإلكترونية الترانزستورات والثنائيات والمكثفات والمحاثات والدوائر المتكاملة. وقد تمثل الإشارات أصواتًا أو صورًا أو أرقامًا أو حروفًا أو تعليمات حاسوبية أو أي معلومات أخرى. ففي مضخم حاكي القرص المدمج، على سبيل المثال، توفر الترانزستورات سلسلة متصلة من التيارات لتقوية الإشارات الكهربائية الممثلة للأصوات التي يعاد الاستماع إليها.


    السلامة الكهربائية

    السلامة مع الكهرباء قد يشكل الكهرباء خطورة على حياتك، ولكن اتباع موجهات معينة قد يساعدك على تجنب الإصابة الكهربائية.
    يعرف معظم الناس أن التيار الكهربائي يمكن أن يمثل خطرًا. وقد تساعد معرفة سبب الخطورة على تلافي الإصابات الكهربائية واستخدام الطاقة الكهربائية بأمان.


    الصدمة الكهربائية. تنتج الصدمة الكهربائية عن مرور التيار الكهربائي في الجسم. فالإشارات الكهربائية الخاصة بالجسم تنتقل عادة عبر الأعصاب حاملة المعلومات من الدماغ وإليه. وتنظم هذه الإشارات الكهربائية نبض القلب وغيره من الوظائف الحيوية. ويؤدي التيار المنساب عبر الجسم إلى تعطل عمل هذه الإشارات، مما يؤدي بدوره إلى تقلص العضلات وفشل القلب والرئتين والوفاة. وقد يحرق التيار الكهربائي الجلد وأنسجة الجسم الأخرى.

    وتقيس الفولتية قوة الدفع التي يوفرها مصدر الطاقة الكهربائية لتحريك الشحنة عبر الدائرة. وقوة دفع بطارية الكشاف الضوئي أو المذياع صغيرة جدًا عادة، ولا تسبب أي إصابات تذكر. أما الفولتية المتاحة عبر مآخذ التيار في المنازل، والبالغة 240 فولت، فخطيرة جدًا، وقد تؤدي إلى الوفاة. وتشتد خطورة الصدمة الكهربائية عندما يكون جلد الشخص مبللاً بالماء، وذلك لأن الماء المخلوط بأملاح الجلد يضعف مقاومة الجسم للتيار الكهربائي، مما يؤدي إلى مرور تيار كهربائي كبير عبر الجسم. وللحصول على بعض المعلومات المرتبطة بالإسعافات الأولية الخاصة بالصدمة الكهربائية انظر : الإسعافات الأولية .

    وتحتوي معظم النبائط الكهربائية على وسائل أمان تمنع حدوث الصدمات الكهربائية، كما تحتوي الكثير من الأجهزة والأدوات على قابس ذي مشبك ثالث يربط الأجزاء الفلزية للنبيطة إلى سلك يقود إلى الأرض. وفي حالة تعطل التوصيلات داخل النبيطة يسمح المشبك الثالث للتيار بالإنسياب إلى الأرض.


    أخطار الكهرباء خارج المنازل. إذا تسلقت شجرة قريبة من خط قدرة كهربائية، قد تصاب بصدمة إذا لامست الشجرة خط القدرة. وتسقط العواصف أحيانًا خطوط القدرة، وقد يصاب الشخص أو يقتل إذا لامس هذه الخطوط وهي مشحونة بالكهرباء.

    وقد تبلغ فولتية التعريفات الكهربائية الناتجة عن الصواعق 100 مليون فولت، وهي كافية لإمرار تيار كهربائي عبر الجسم، يمكنه قتل الشخص. ويمكنك تجنب ضربات الصواعق بالمكوث داخل المنزل أثناء العواصف. أما إذا صادفتك الصاعقة خارج المنزل فابتعد عن الحقول المكشوفة والأماكن العالية. والغابة أكثر أمنًا من الأرض المكشوفة، ولكن ينبغي تجنب الوقوف تحت الشجرة الطويلة أو المعزولة، والتي تكون أكثر عرضة للصواعق. ومن أكثر الأماكن أمنًا أثناء الصواعق السيارات، حيث يمتص السطح الفلزي الخارجي للسيارة الشحنات الكهربائية، تاركًا الأجزاء الداخلية بعيدة عن تأثير التيار.


    الحريق الكهربائي. من أخطار الكهرباء. فعند مرور تيار كهربائي عبر موصل، تسبب المقاومة الناتجة ارتفاع درجة حرارة الموصل. وقد تكون الحرارة الناتجة مفيدة أحيانًا، حيث تستخدم الحرارة الناتجة عن تسخين الأسلاك في بعض أجهزة الطبخ. ولكن التسخين الزائد للأسلاك قد يؤدي إلى حدوث حريق، حيث تدمر الحرائق الكهربائية الكثير من المنازل كل عام. ولتجنب الحرائق ينبغي عدم توصيل نبائط عديدة إلى مأخذ تيار واحد، وتجنب استخدام النبائط ذات الأسلاك المتقطعة أو البالية.


    الكهرباء والمغنطيسية
    المغنطيس الذي تثبته على ثلاجتك قد لا يبدو ذا علاقة بالكهرباء. ولكن المغنطيسية في الواقع ذات علاقة وثيقة بالكهرباء. فكما يحيط المجال الكهربائي بالشحنة الكهربائية، وينتج قوة تؤثر على الشحنات الأخرى، يحيط المجال المغنطيسي بالمغنطيس، وينتج قوى تؤثر على المغانط الأخرى. ومثل الشحنة الكهربائية، يستطيع المغنطيس جذب مغنطيس آخر أو إبعاده. وبالإضافة إلى ذلك، تنتج المغنطيسية عن التيارات الكهربائية. وفي المغانط الدائمة تنتج التيارات عن حركة الإلكترونات في بعض الذرات. فالإلكترونات تتحرك على محاورها، وتحيط بالنويات الذرية.

    تكوِّن المغنطيسية والكهرباء معًا قوة أساسية في الكون تسمى الكهرومغنطيسية. وتعتمد هذه القوة على حقيقة أن حركة الشحنات الكهربائية تنتج مجالات مغنطيسية، وأن المجالات المغنطيسية المتغيرة تنتج تيارات كهربائية.

    فإمرار تيار كهربائي عبر ملف سلكي، على سبيل المثال، يحول الملف إلى مغنطيس مؤقت يسمى المغنطيس الكهربائي، حيث يولد التيار الكهربائي مجالاً مغنطيسيًا حول الملف السلكي. ويظل الملف مغنطيسيًا طالما استمر مرور التيار الكهربائي فيه.

    وتستطيع المغنطيسية بدورها إنتاج تيار كهربائي عن طريق الحث الكهرومغنطيسي. وفي هذه العملية يتحرك ملف سلكي قرب مغنطيس، حيث تسبب هذه الحركة مرور تيار كهربائي عبر السلك، يستمر مع استمرار الحركة. وتنتج المولدات التيار الكهربائي بهذه الطريقة.

    وتنتج المجالات الكهربائية والمغنطيسية المتغيرة معًا الموجات الكهرومغنطيسية، التي تسمى أيضًا الإشعاع الكهرومغنطيسي. وتنقل هذه الموجات طاقة تسمى الطاقة الكهرومغنطيسية بسرعة الضوء. وتكوِّن الموجات الكهرومغنطيسية الضوء والإشارات الإذاعية والتلفازية والموجات الدقيقة، كما تكوِّن الأشعة تحت الحمراء التي تحس بها في شكل حرارة عند وقوفك قرب موقد ساخن، والأشعة فوق البنفسجية التي تسبب حرق الشمس. والأشعة السينية التي يستخدمها الأطباء في فحص الأجزاء الداخلية لجسمك تتكون أيضًا من الموجات الكهرومغنطيسية، كما تتكون منها أيضًا أشعة جاما الصادرة عن المفاعلات النووية، أو القادمة من الفضاء الخارجي.


    نبذة تاريخية



    إنجازات تاريخية في الكهرباء
    الاكتشافات المبكرة. لاحظ الإغريق القدماء قبل بضعة آلاف سنة أن مادة تسمى الكهرمان تجذب إليها المواد الخفيفة مثل الريش والقش، بعد دلكها بقماش. والكهرمان مادة أحفورية ناتجة عن تصلب أشجار الصنوبر التي عاشت قبل ملايين السنين. وهو عازل جيد للكهرباء، ولذلك فهو يمسك الشحنة الكهربائية بسهولة. وبالرغم من أن الإغريق لم يعرفوا الشحنة الكهربائية فقد كانوا في الواقع يجرون تجارب على الكهرباء الساكنة عندما كانوا يدلكون الكهرمان بالقماش.

    وعرف بعض القدماء، ومنهم الإغريق والصينيون القدماء، أيضًا مادة صلبة أخرى يمكنها جذب الأشياء، وهي المادة المسماة اللودستون أو الماجنتيت. وهو معروف اليوم بأنه مغنطيس طبيعي ميال إلى جذب الأجسام الحديدية الثقيلة، بينما يجذب الكهرمان الأشياء الخفيفة مثل القش. وفي عام 1551م أثبت عالم الرياضيات الإيطالي جيرولامو كاردانو، والمعروف أيضًا باسم جيروم كاروان، أن التأثيرات الجذبية لكل من الكهرمان والماجنتيت لابد أن تكون مختلفة. وكان كاردانو أول من لاحظ الفرق بين الكهرباء والمغنطيسية.

    وفي عام 1600م، أوضح الفيزيائي البريطاني وليم جيلبرت أن بعض المواد، مثل الزجاج والكبريت والشمع، ذات خواص شبيهة بخواص الكهرمان. فعند دلكها بقماش تكتسب هذه المواد خاصية جذب الأشياء الخفيفة. وقد سمى جيلبرت هذه المواد الكهربيات، ودرس خواصها، وخلص إلى أن تأثيراتها ربما تُعزى إلى نوع من السوائل. ونحن نعرف اليوم أن ما سماها جيلبرت الكهربيات هي عوازل جيدة للكهرباء.


    تجارب الشحنة الكهربائية. في ثلاثينيات القرن الثامن عشر وجد العالم الفرنسي تشارلز دوفاي أن القطع الزجاجية المشحونة تجذب المواد الشبيهة بالكهرمان، ولكنها تتنافر مع المواد الشبيهة بالزجاج، واستنتج من ذلك أن هناك نوعين من الكهرباء سماهما الكهرباء الزجاجية (للمواد الشبيهة بالزجاج)، والكهرباء الراتينجية (للمواد الشبيهة بالكهرمان). وبذلك استطاع دوفاي التوصل إلى نوعي الشحنات الكهربائية السالبة والموجبة، بالرغم من أنه اعتقد أنهما نوعان من "السوائل الكهربائية".

    بدأ العالم ورجل الدولة الأمريكي بنجامين فرانكلين تجاربه على الكهرباء في عام 1746م. وقد بنى هذه التجارب على اعتقاد مفاده أن هناك نوعًا واحدًا من السوائل الكهربائية. فالأجسام التي تحمل كمية كبيرة من السائل تتنافر، بينما تتجاذب الأجسام التي تحمل كمية قليلة من السائل. وإذا لامس جسم به فائض من السائل جسمًا آخر قليل السائل يتقاسم الجسمان السائل. وقد أوضحت فكرة فرانكلين كيف تلغي الشحنات المتضادة بعضها بعضًا عندما تتلامس.

    استخدم فرانكلين مصطلح موجب للإشارة لما اعتقد أنه فائض من سائل، كما استخدم مصطلح سالب لنقصان السائل. ولم يعرف فرانكلين أن الكهرباء ليست سائلاً، بل يرتبط بشحنات الإلكترونات والبروتونات. ونحن نعرف اليوم أن الأجسام المشحونة بشحنة موجبة تحمل عددًا قليلاً من الإلكترونات، بينما تحمل الأجسام المشحونة بشحنة سالبة فائضًا من الإلكترونات.

    وفي عام 1572م، أجرى فرانكلين تجربته الشهيرة التي أطلق فيها طائرة ورقية أثناء عاصفة برقية، حيث اكتسب كل من الطائرة والخيط شحنة كهربائية، فاعتقد فرانكلين أن السحب نفسها مشحونة أيضًا بالكهرباء، كما رسخ في اعتقاده أن البرق شرارة كهربائية هائلة. ومن حسن حظ فرانكلين أن البرق لم يمس الطائرة، إذ ربما أدى ذلك إلى قتله.

    وفي عام 1767م، صاغ العالم الإنجليزي جوزيف بريستلي القانون الرياضي الذي يوضح كيف تضعف قوة الجذب بين الجسمين المشحونين بشحنات متضادة كلما زادت المسافة بين الجسمين. وفي عام 1785م، أكد العالم الفرنسي شارل أوغسطين دو كولمبو قانون بريستلي، بنفس الشحنة. ويطلق على هذا المبدأ اليوم اسم قانون كولمبو.

    وفي عام 1771م، وجد عالم التشريح الإيطالي لويجي جالفاني أن رجل الضفدعة المقتولة حديثًا ترتعش إذا لُمست بفلزين مختلفين في الوقت نفسه، وحظيت هذه التجربة بانتباه شديد. وفي أواخر تسعينيات القرن الثامن عشر قدم الفيزيائي الإيطالي أليساندرو فولتا تفسيرًا لذلك، حيث أوضح أن تفاعلاً كيميائيًا يحدث في المادة الرطبة الملامسة لفلزين مختلفين، وينتج عن التفاعل الكيميائي تيار كهربائي. وهذا التيار هو الذي أدى إلى ارتعاش رجل الضفدعة في تجربة جالفاني. جمع فولتا أزواجًا من الأقراص يتكون كل منها من قرص من الفضة وقرص من الخارصين، وفصل بين الأزواج بورق أو قماش مبلل بالماء المالح. وبرص عدد من هذه الأقراص صمم فولتا أول بطارية، وأطلق عليها اسم عمود فولتا.

    وتلا ذلك العديد من التجارب على عمود فولتا وعلى الدوائر الكهربائية. واستنبط الفيزيائي الألماني جورج أوم قانونًا رياضيًا يحدد العلاقة بين التيار والفولتية والمقاومة لمواد معينة. وحسب قانون أوم، الذي نشر في عام 1827، تدفع الفولتية الكبيرة تيارًا كبيرًا عبر مقاومة معينة. وبالإضافة إلى ذلك تدفع فولتية معلومة تيارًا كبيرًا عبر المقاومة الصغيرة.


    الكهرباء والمغنطيسية. في عام 1820م، وجد الفيزيائي الدنماركي هانز أورستد أن التيار الكهربائي الذي يسري قرب إبرة بوصلة يجعل الإبرة تتحرك. وقد كان أورستد أول من أوضح وجود علاقة محددة بين الكهرباء والمغنطيسية. وخلال عشرينيات القرن التاسع عشر اكتشف أندريه ماري أمبير العلاقة الرياضية بين التيارات والمجالات المغنطيسية. وتعد هذه العلاقة، التي عرفت بقانون أمبير، أحد القوانين الأساسية في الكهرومغنطيسية.

    وفي أوائل ثلاثينيات القرن التاسع عشر اكتشف العالم الإنجليزي مايكل فارادي والفيزيائي الأمريكي جوزيف هنري، كل على انفراد، أن تحريك مغنطيس قرب ملف سلكي، يولد تيارًا كهربائيًا في السلك. وأوضحت تجارب تالية أن تأثيرات كهربائية تحدث في أي وقت يحدث فيه تغيير في مجال مغنطيسي. وتبنى التسجيلات السمعية والبصرية والأقراص الحاسوبية والمولدات الكهربائية على هذا المبدأ.

    وقد جمع الفيزيائي الأسكتلندي جيمس كلارك ماكسويل كل القوانين المعروفة، ذات العلاقة بالكهرباء والمغنطيسية، في مجموعة واحدة من أربع معادلات. وتصف قوانين ماكسويل، التي نشرت في عام 1865م، بوضوح، كيف تنشأ المجالات الكهربائية والمغنطيسية وتتداخل. وقدم ماكسويل طرحًا جديدًا يقضي بأن المجال الكهربائي المتغير ينتج مجالاً مغنطيسيًا، وقاده ذلك إلى افتراض وجود الموجات الكهرومغنطيسية، المعروفة الآن بأنها تشمل الضوء والموجات الراديوية والأشعة السينية. وفي أواخر ثمانينيات القرن التاسع عشر أوضح الفيزيائي الألماني هينريتش هرتز كيفية توليد الموجات الراديوية، والكشف عنها، ودعم بذلك افتراض ماكسويل. وفي عام 1901م، استطاع المخترع الإيطالي جوليلمو ماركوني نقل الموجات الكهرومغنطيسية عبر المحيط الأطلسي، ممهدًا بذلك لمرحلة الإذاعة والتلفاز وأقمار الاتصالات والهواتف الخلوية.




    إنجازات تاريخية في الكهرباء
    العصر الإلكتروني. اعتقد الفيزيائي الأيرلندي ج. جونستون ستوني أن التيار الكهربائي ينتج عن حركة جسيمات صغيرة جدًا، مشحونة كهربائيًا. وفي عام 1891م، اقترح أن تسمى هذه الجسيمات الإلكترونات. وفي عام 1897م، أثبت الفيزيائي الإنجليزي جوزيف جون طومسون وجود الإلكترونات، وأوضح أنها تدخل في تركيب كل الذرات. وفي بحث نشر في عام 1913م، قاس الفيزيائي الأمريكي روبرت ميليكان بدقة شحنة الإلكترون.

    وفي أواخر القرن التاسع عشر، اكتشف العلماء أن الإلكترونات يمكن فصلها عن أسطح الفلزات وتفريغها في صمام مفرغ. والصمام المفرغ أنبوب زجاجي أزيل عنه معظم الهواء، ويحتوي على أقطاب متصلة بأسلاك تمتد عبر الزجاجة. ويؤدي ربط بطاريات إلى الأقطاب إلى سريان تيار من الإلكترونات داخل الصمام. ويمكن ضبط التيار بالتحكم في الفولتية. وتستطيع الصمامات المفرغة تضخيم التيارات الكهربائية الضعيفة ودمجها والفصل بينها. وقد مهد هذا الاختراع الطريق لصنع أجهزة المذياع والتلفاز وغيرها من التقنيات.

    وفي عام 1947م، اخترع الفيزيائيون الأمريكيون جون باردين ووالتر براتين ووليم شوكلي الترانزستور. وتؤدي الترانزستورات نفس وظائف الصمامات المفرغة، ولكنها أصغر من الصمامات المفرغة، وأكثر تحملاً، وتستهلك طاقة أقل. وبحلول ستينيات القرن العشرين حلت الترانزستورات محل الصمامات المفرغة في معظم المعدات الإلكترونية. ومنذ ذلك التاريخ تمكنت شركات الإلكترونات من تصغير حجم الترانزستور إلى حد كبير. واليوم توضع ملايين الترانزستورات، المتصلة بعضها ببعض، في رقاقة واحدة تسمى الدائرة المتكاملة.


    التطورات الأخيرة. يزداد الطلب العالمي على الطاقة الكهربائية عامًا بعد عام. وتأتي معظم الطاقة الكهربائية التي نستخدمها من محطات القدرة التي تحرق الوقود الأحفوري مثل الفحم والزيت والغاز الطبيعي. ويأتي جزء من الطاقة الكهربائية من المحطات النووية والكهرمائية (محطات القدرة المائية)، بينما تأتي كميات صغيرة من الخلايا الشمسية وطواحين الهواء وغيرها من المصادر.

    وتثير محدودية مخزون الأرض من الوقود الأحفوري، واحتمال نفاده، قلق الكثيرين. ومن المشاكل الأخرى أن طرق توليد الطاقة الكهربائية المستخدمة حاليًا قد تضر البيئة. ولذلك يحاول العلماء والمهندسون، كما تحاول شركات القدرة الكهرمائية، إيجاد مصادر بديلة للطاقة الكهربائية. ومن هذه البدائل الطاقة الشمسية والجيوحرارية وطاقة الرياح وطاقة المد والجزر. انظر: مخزون الطاقة (المشكلات؛ التحديات).

    ويأمل العديد من العلماء أن يؤدي استخدام نبائط كهربائية جديدة إلى الحد من الطلب المتزايد على الطاقة الكهربائية. فالحواسيب على سبيل المثال، قد تتحكم في أنظمة الإنارة التي توفرها المصابيح الضوئية العادية، ولكنها تستهلك خمس الطاقة الكهربائية التي تستهلكها هذه المصابيح. وتمكن الحواسيب ونظم الاتصالات الحديثة الناس من العمل في المنازل، مما يوفر الطاقة المستهلكة في المواصلات























    جميع الكائنات الحية تتأثر بالوراثة. فالفتاة الصغيرة (أعلى اليمين) ورثت النمش والشعر الأحمر عن والدتها. ويشبه صغير الكنغر (أسفل اليمين) أمه. وتنمو أشجار التنُّوب الصغيرة وتصبح ضخمة مثل أصولها (أسفل اليسار). وتحدث العملية الوراثية حتى بين الكائنات وحيدة الخلية مثل انشطار الحيوان الأولي مكونا نسلاً من فردين متشابهين (أعلى اليسار).
    الوراثة إمرار الخصائص البيولوجية من جيل إلى آخر. تحدث عملية الوراثة بين كل الكائنات الحية ـ الحيوانات والنباتات، وحتى الكائنات المجهرية مثل البكتيريا. وتفسر الوراثة لماذا تلد الأم البشرية طفلاً بشريًا، ولماذا تلد القطة قططًا وليس كلابًا. والوراثة هي السبب في تشابه النسل بالآباء.

    وعن طريق الوراثة، ترث الكائنات الحية خصائص تسمى السمات من الآباء. فأنت تشبه أبويك لأنك ورثت عنهما لون شعرك، وشكل أنفك، وسمات أخرى عديدة. وتتكون الكائنات الحية من خلايا تحتوي على تركيبات بيوكيميائية دقيقة بداخلها لنقل السمات من جيل إلى آخر. وتتكون هذه التركيبات، التي تسمى المورثات (الجينات)، من مادة كيميائية تسمى د ن أ (الحمض النووي الريبي منقوص الأكسجين). وتتراص المورثات مكونة سلاسل طويلة من د ن أ، في تركيبات تسمى الصبغيات (الكروموزومات).

    والمورثات تشبه الطبعات الزرقاء في عمليات بناء المنازل، غير أنها تحمل خطط بناء الخلايا والأنسجة والأعضاء والأجسام. وهي تحمل التعليمات الخاصة ببناء آلاف الكتل البنائية الكيميائية في الجسم. وتسمى هذه الكتل البنائية البروتينات، وبعضها مسؤولة عن أحجام وأشكال وتركيبات الأجزاء المكونة لجسمك. وتساعد بروتينات أخرى تسمى الإنزيمات، في حدوث آلاف التفاعلات الكيميائية التي تنتظم جسمك وأجسام الكائنات الحية الأخرى. وتسمى العملية التي تكوِّن بها الخلية البروتينات، حسب التعليمات المحمولة في المورثات، التعبير الجيني.

    وللمورثات تأثيرات قوية، ولكنها لا تتحكم في الحياة كلها. فمعظم الخصائص تنتج عن تأثير كل من الوراثة والبيئة، حيث لا يكفي مثلاً أن ترث موهبة العزف على البيانو لتصبح عازف بيانو ماهرًا، بل يجب عليك أن تقتني البيانو، وتتلقى دروسًا في العزف عليه، وتمارس العزف. فالموهبة وراثية، بينما الدروس والممارسة وتوافر البيانو مؤثرات بيئية.

    صاغ الراهب وعالم النبات النمساوي جريجور مندل القوانين الأساسية للوراثة في منتصف القرن التاسع عشر. أسس مندل قوانينه على دراساته التي تناولت الأنماط الوراثية لبازلاء الحدائق. وقد ظل عمله مجهولاً حتى عام 1900م، بالرغم من أنه نشر نتائج تجاربه في عام 1866م.

    وضعت تجارب مندل أساس الدراسة العلمية للوراثة أو ما يسمى علم الوراثة. وعبر السنوات، تجمعت لدى علماء الوراثة معلومات كثيرة عن الأسباب التي تجعل الكائن البشري والكائنات الحية الأخرى تتخذ الأشكال التي تتخذها، أو تسلك السلوك الذي تسلكه. وبدأ هؤلاء العلماء أيضًا يكتشفون مسببات الأمراض الوراثية، ويوجدون علاجات لها. ولعلم الوراثة اليوم عدة فروع. فعلم الوراثة الجزيئي، على سبيل المثال، يشتمل على دراسة الطبيعة الكيميائية للمورثات ونشاطاتها. وللحصول على مزيد من المعلومات عن الفروع المختلفة لعلم الوراثة، انظر: الوراثة، علم.


    --------------------------------------------------------------------------------

    مصطلحات الوراثة

    --------------------------------------------------------------------------------

    الأليلات أشكال مختلفة من نفس المورثة.
    البروتين كتلة بنائية كيميائية في الجسم. توجد البروتينات في كل الخلايا.
    التعبير الجيني هو العملية التي تُنتج بها البروتينات أو ر ن أ حسب التعليمات المحمولة في المورثات.
    التنوع الوراثي يشير إلى الاختلافات في السمات الموروثة بين أفراد نوع معين.
    د ن أ يمثل الحمض النووي الريبي منقوص الأكسجين، وهو المادة داخل الصبغيات التي تحمل التعليمات الوراثية لإنتاج البروتينات و ر ن أ.
    ر ن أ يمثل الحمض النووي الريبي. يشبه د ن أ، ويؤدي دورًا أساسيًا في إنتاج البروتينات.
    السمة هي الخاصية، مثل لون الشعر.
    الصبغيات تركيبات خيطية دقيقة داخل كل خلية. تحمل الصبغيات المورثات.
    الطفرة تغير يحدث على المورثة، وقد تنتج سمة جديدة يمكن توريثها.
    علم الوراثة هو الدراسة العلمية للوراثة.
    المجين هو مجمل المورثات التي يحملها نوع معين على الصبغيات. يتكون المجين البشري من عدد من المورثات يتراوح بين 500,000 و 100,000 مورثة.
    المورثات تركيبات بيوكيميائية دقيقة داخل كل خلية تحدد سمات وراثية معينة مثل لون العين وفصيلة الدم. وكل مورثة قطعة من د ن أ تحمل تعليمات إنتاج الجزيئات الخيطية الشكل، التي تكوِّن البروتينات.
    النمط الظاهري هو المظهر الملحوظ لسمة ما، أو المظهر الكلي للفرد.
    النمط الوراثي هو التركيب الوراثي المستبطن لسمة ما، أو التركيب الوراثي الكلي للفرد.




    الصبغيات والمورثات


    --------------------------------------------------------------------------------

    كيف تورَّث الصبغيات

    --------------------------------------------------------------------------------


    تنتج الخلايا الجنسية ـ أي البيوض في الإناث والنطاف في الذكور ـ بعملية تسمى الانقسام الاختزالي، حيث تتولد عن هذه العملية خلايا جنسية ناضجة، مثل تلك الموضحة أعلاه، محتوية على نصف عدد الصبغيات التي نجدها في خلايا الجسم الأخرى. وعليه تحتوي البيوض والنطاف في الإنسان على 23 صبغيًا.


    عندما تتحد النطفة بالبيضة تنتج بيضة مخصبة تحتوي على 46 صبغيًا مثل خلايا الجسم الأخرى. وتترتب هذه الصبغيات في 23 زوجًا، ويأتي أحد صبغيي كل زوج من الأم والصبغي الآخر من الأب.


    تركيب الصبغيات والمورثات. في جسم الإنسان وأجسام معظم الكائنات الحية الأخرى توجد الصبغيات في جزء من الخلية يسمى النواة. والصبغيات تركيبات خيطية الشكل مكونة إلى حد كبير من د ن أ وبروتينات. وتوجد الصبغيات عادة في أزواج، حيث يتشابه صبغيا كل زوج في الحجم والشكل، ويحتويان على معلومات وراثية متشابهة.

    ويحتوي كل نوع من أنواع الحيوانات والنباتات على عدد مميز من الصبغيات في خلاياه الجسدية، وهي الخلايا التي تكوِّن أجزاء الجسم المختلفة مثل العضلات والعظام. وتختلف الخلايا الجسدية عن الخلايا الجنسية. ففي ذكور الحيوانات تسمى الخلايا الجنسية النطاف، بينما تسمى حبوب اللقاح في النباتات المذكرة. أما في الحيوانات والنباتات المؤنثة فتسمى الخلايا الجنسية البيوض. ويحتوي الإنسان على 46 صبغيًا في خلاياه الجسدية، مرتبة في 23 زوجًا، بينما يحتوي الكلب على 78 صبغيًا (39 زوجًا)، والذرة الشامية على 20 صبغيًا (10 أزواج)، وذبابة الفاكهة المسماة دروسوفيلا ميلانوجستر ـ التي يكثر استخدامها في أبحاث الوراثة ـ على 8 صبغيات (4 أزواج).

    والمورثات هي الوحدات الأساسية للوراثة. وتكوِّن كل مورثة جزءًا من جزيئ د ن أ، وهو جزيئ طويل جدًا يوجد داخل الصبغي.

    ولكل نوع من أنواع الحيوانات والنباتات عدد معين من المورثات في صبغياتها. فعلى سبيل المثال، يقدر العلماء عدد المورثات في الإنسان بما يتراوح بين 50,000 و100,000 مورثة مختلفة. ويبلغ عدد المورثات في ذبابة الفاكهة حوالي 60,000 مورثة. وتسمى مجموعة المورثات في صبغيات أي كائن حي المجين.



    --------------------------------------------------------------------------------

    كيف يحدد جنس الشخص

    --------------------------------------------------------------------------------


    تحدد صبغيات تسمى الصبغيات X والصبغيات Y ما إذا كانت البيضة المخصبة ستصبح ولدًا أم بنتًا. فالخلية الجنسية المؤنثة غير الناضجة تحتوي على صبغيين متماثلين، بينما تحتوي الخلية الجنسية المذكرة غير الناضجة على صبغي X وصبغي Y.


    وعندما تنقسم الخلية الجنسية المؤنثة غير الناضجة تتلقى كل خلية بيضية ناضجة جديدة صبغي X مفردًا. وعندما تنقسم الخلية الجنسية المذكرة غير الناضجة تتلقى نصف النطاف الناضجة صبغي X، ونصفها صبغي Y.


    تحتوي البيضة المخصبة بنطفة محتوية على صبغي X على صبغيي X (إلى اليسار)، وتنمو إلى بنت، بينما تحتوي البيضة المخصبة بنطفة محتوية على صبغي Y على صبغي X واحد وصبغي Y واحد (إلى اليمين)، وتنمو إلى ولد.


    الخلايا الجنسية والتكاثر. ينقسم التكاثر إلى نوعين: التكاثر اللاجنسي والتكاثر الجنسي. وينطوي التكاثر اللاجنسي على أب واحد، وتكون فيه صبغيات النسل مطابقة لصبغيات الأب. فعندما تتكاثر الدودة المسماة المستورقة لاجنسيًا، على سبيل المثال، ينقسم جسمها إلى قطاعين، قطاع يشتمل على الرأس وآخر على الذيل، ثم ينمِّي كل قطاع الأجزاء المفقودة، ويصبح كائنًا جديدًا شبيهًا وراثيًا بالكائن الأب.

    وينطوي التكاثر الجنسي عادة على أبوين، يساهم كل منهما بنصف صبغيات الكائن الوليد. ويبدأ التكاثر الجنسي بإنتاج خلايا جنسية متخصصة تسـمى الجاميـتات ـ النطاف وحبوب اللقاح والبيوض ـ بعملية انقسام خلوي يسمى الانقسام الاختزالي، تنتج عنه خلايا جنسية محتوية على نصف عدد صبغيات الخلايا الجسدية. ولذلك ينتج عن الانقسام الاختزالي في الإنسان نطاف وبيوض يحتوي كل منها على 23 صبغيًا. وفي الكلب، يبلغ عدد الصبغيات في كل خلية جنسية 39 صبغيًا.

    ويستعاد العدد الكامل للصبغيات باتحاد البيضة والنطفة بعملية تسمى الإخصاب. وفي الإنسان، تحتوي الخلية الناتجة، المسماة البيضة المخصبة، على 46 صبغيًا (23 زوجًا)، حيث يأتي أحد صبغيي كل زوج من بيضة الأم والآخر من نطفة الرجل. وبعد الإخصاب تبدأ البيضة في الانقسام، وإنتاج نسخ مطابقة لها، بعملية انقسام خلوي يسمى الانقسام الخيطي، تنتج عنه خلايا جديدة، محتوية على عدد من الصبغيات مساو لعدد صبغيات الخلية الأم. ولمزيد من المعلومات عن كل من الانقسام الاختزالي والانقسام الخيطي انظر: الخلية (انقسام الخلية).


    الصبغيات وتحديد الجنس. يتحدد الجنس في الإنسان بصبغيات تسمى الصبغيات X والصبغيات Y. وتحتوي البيضة عادة على الصبغي X ، بينما تحتوي النطفة على الصبغي X أو الصبغي Y. وفي حالة حدوث الإخصاب بين بيضة ونطفة حاملة للصبغي Y يكون الجنين ذكرًا (xy)، ويكون أنثى (xx) في حالة حدوث الإخصاب بين بيضة ونطفة حاملة للصبغي X. وينتج الذكور عددًا من النطاف ذات الصبغي X مساويًا لعدد النطاف ذات الصبغي Y، ولذلك نجد أن العدد الكلي للإناث مساو تقريبًا للعدد الكلي للذكور.


    أنماط الوراثة


    انتقال المهق المهق حالة وراثية لايستطيع فيها الكائن الحي إنتاج الصباغ. ويصيب المهق الإنسان والعديد من أنواع النباتات والحيوانات.
    تسمى الأشكال المختلفة من نفس المورثة الأليلات. والأليل الذي ينتج الصباغ سائد، ويحجب تأثيرات أليل المهق، وهو أليل متنح. ونتيجة لذلك لايصيب المهق سوى الأفراد الذين يرثون أليلين لتلك السمة. وفي المخطط أعلاه يحمل كل من الأبوين أليلاً عاديًا واحدًا (ع) وأليل مهق واحدًا (م). ولا يصيب المهق أولئك الذين يرثون أليل المهق من أحد الأبوين فقط، ولكنهم قد ينقلون الأليل إلى الصغار.
    المورثات السائدة والمتنحية. توجد معظم المورثات في أزواج. ويوجد كل زوج من المورثات في زوج من الصبغيات المتماثلة، بحيث تكون كل مورثة من زوج المورثات في كل صبغي. وتتحدد بعض السمات الوراثية بزوج واحد من المورثات. فالمركب الكيميائي ثيوكارباميد الفينيل لاذع المذاق لدى بعض الناس، وعديم المذاق لدى آخرين، وينتج ذلك عن زوج واحد من المورثات. ولكن العديد من السمات الأخرى، والتي تسمى السمات المتعددة المورثات، يدخل في إنتاجها عدد من أزواج المورثات، حيث تساهم عشرات أو مئات من أزواج المورثات في توارث سمات مثل الطول والوزن والذكاء.

    وقد تختلف مورثتا كل زوج في التأثيرات الناتجة عنهما. وتسمى الأشكال المختلفة من نفس المورثة الأليلات. وبعض الأليلات سائدة وبعضها متنحية، حيث يحجب الأليل السائد تأثيرات الأليل المتنحي المقابل، مما يعني أن الأليل السائد يعبَّر عنه في التوارث، بينما لايعبَّر عن الأليل المتنحي. ولا تظهر السمة الناتجة عن الأليل المتنحي إلا في الفرد الذي يمتلك أليلين متنحيين لتلك السمة. فعلى سبيل المثال، أوضح مندل أن الأليل الذي يُنتج الأزهار البنفسجية في نبات البازلاء (يرمز له بالحرف ب) سائد على الأليل الذي ينتج الأزهار البيضاء (يرمز له بالحرف بـ). ولذلك تنتج نباتات البازلاء التي تحمل أليلين سائدين للأزهار البنفسجية (ب ب) أو أليلاً واحدًا للأزهار البنفسجية وآخر للأزهار البيضاء (ب بـ)، أزهارًا بنفسجية. ولن تنتج الأزهار البيضاء إلا عن النباتات التي تحمل أليلين متنحيين (بـ بـ).



    المهق عند الحيوانات
    المورثات المرتبطة بالجنس. تسمى المورثات التي توجد قريبة بعضها من بعض في نفس الصبغي المورثات المرتبطة، لأنها تميل إلى الانتقال معًا إلى الجيل التالي. وتسمى المورثات المحمولة على الصبغيات الجنسية المورثات المرتبطة بالجنس. وفي الإنسان أكثر من 250 مورثة محمولة على الصبغي X، يمكنها أن تسبب اضطرابات وراثية، وتسمى المورثات المرتبطة بالصبغي X. ومن هذه الاضطرابات: الناعورية ونوع من الحثل العضلي. ومعظم هذه الاضطرابات متنحية، وتحدث عادة في الذكور، لأن الذكور يحملون صبغي X واحدًا، بينما تحمل الإناث صبغيين يحمل أحدهما على الأقل الأليل العادي السائد الذي يحدد السمة، في حين لاتساهم المورثة الضارة على الصبغي الآخر في التحديد.


    مصادر التنوع الوراثي
    تختلف كائنات أي نوع، بعضها عن بعض، كثيرًا في تركيبها الوراثي، وبالتالي في سماتها. فأنت قد تشبه أبويك، ولكنك لست نسخة مطابقة لأي منهما، لأنك ورثت نصف مورثاتك من الأب والنصف الآخر من الأم. وأنت لا تشبه بالضبط زملاء دراستك مثلاً، بالرغم من أنكم جميعًا تنتمون إلى الجنس البشري. ويطلق العلماء على أوجه الاختلاف بين أعضاء نفس النوع التنوع الوراثي. ويناقش هذا الجزء المصدرين الرئيسيين للتنوع الذي نراه بين أعضاء النوع الواحد، وهما الطفرة والتوليف الوراثي. ويصف الجزء الذي يلي هذا الجزء ـ أي الوراثة والانتخاب الطبيعي ـ كيف تتغير الأنواع، وبعض المجموعات داخل الأنواع، مع الزمن.


    الطفرة. تغير دائم في كمية د ن أ وتركيبه في خلايا كائن حي، قد يؤدي إلى تغيرات في التعبير الجيني، وبالتالي السمات.

    أنواع الطفرات. قد تحدث الطفرات في الخلايا الجنسية أو خلايا الجسم. فالطفرة الإنتاشية مثلاً، تؤثر على د ن أ في الجاميتات ولذلك تمرَّر من الكائن الحي إلى نسله. وتحدث الطفرة الجسدية في خلايا الجسم. وفي الإنسان والحيوانات لا تؤثر الطفرات الجسدية على الجاميتات، ولذلك لا تنتقل التغيرات إلى الأجيال التالية، ولكنها تمرَّر إلى الخلايا الناتجة عن الخلية الأصلية المتطفرة.

    وتؤثر الكثير من الطفرات على الصبغيات. ففي بعض الحالات يكون عدد الصبغيات في الكائن الحي كثيرًا جدًا أو قليلاً جدًا. فالمصابون بالحالة المرضية المسماة متلازمة داون، على سبيل المثال، يحملون نسخة إضافية من الصبغي 21، وهو أحد أزواج الصبغيات البالغ عددها 23 زوجًا. وفي بعض الأحيان يكون هناك شذوذ في تركيب صبغي معين. فعلى سبيل المثال، تحدث طفرة تسمى الإزفاء عندما يتفتت أحد الصبغيات، وتلتصق إحدى القطع الناتجة عن التفتت بصبغي آخر.

    وتؤثر بعض الطفرات على إحدى الوحدات المكونة لجزيئ د ن أ، أو مجموعة من الوحدات. وهناك عدة أنواع لهذه الطفرات النُّقْطية أو الطفرات الجينية. فعلى سبيل المثال، يغير أحد هذه الأنواع زوجًا واحدًا من الوحدات الكيميائية، مؤديًا بذلك إلى تغير التعليمات المحمولة في ذلك الجزء من د ن أ.

    أسباب الطفرات. تنتج بعض الطفرات عن الأخطاء التي تحدث عند تكوُّن نسخ من د ن أ أثناء الانقسام الخلوي. وتتسبب عوامل تسمى المطفرات في حدوث بعض الطفرات. وتشمل المطفرات بعض الكيميائيات وأشكال متنوعة من الإشعاع.


    التوليف الوراثي. عندما تتزاوج الكائنات الحية تظهر توليفات جديدة من السمات على صغارها. وتحدث هذه التوليفات عن طريق 1- الترتُّب المستقل للمورثات على الصبغيات المختلفة 2- التعابر.

    الترتب المستقل. يشير الترتب المستقل إلى الطريقة التي تتوزع بها الصبغيات ومورثاتها عند انقسام خلية جنسية لتكوين البيوض أو النطاف. فالخلية الجنسية غير الناضجة تحتوي على زوج من كل صبغي، حيث يأتي أحد الصبغيين من الأب والآخر من الأم. وفي أثناء الانقسام الاختزالي ينفصل كل زوج من أزواج الصبغيات، وتستقبل كل بيضة أو نطفة صبغيًا واحدًا من كل زوج. ولأن الصبغيات تنفصل بطريقة عشوائية فإن كل بيضة أو نطفة تستقبل بعض الصبغيات من الأم وبعضها من الأب. وتنتج عن إعادة خلط الصبغيات والمورثات بهذه الطريقة توليفات جديدة من السمات في النسل.

    التعابر. هو تبادل المورثات بين صبغيين مزدوجين. فالمورثات المحمولة على كل صبغي تورث بطريقة عشوائية، وباستقلال عن المورثات المحمولة في الصبغيات الأخرى. ولكن المورثات المتجاورة في نفس الصبغي تُورّث عادة معًا. وبعبارة أخرى، تبقى المورثات الشديدة الارتباط في أحد صبغيات الأب أو الأم مرتبطة أيضًا في النسل.

    وفي بعض الأحيان لا تورَّث المورثات المرتبطة دفعة واحدة. وينشأ هذا الوضع بسبب التعابر. فقبل انقسام الخلايا الجنسية غير الناضجة مباشرة لتكوين النطاف أو البيوض يتقابل صبغيا كل زوج جنبًا إلى جنب. وفي أثناء التعابر تتبادل مجموعات من المورثات في أحد الصبغيات مواقعها مع مجموعات من المورثات في الصبغي الآخر المزدوج معه. ونتيجة لذلك يحدث أحيانًا أن تحمل النطاف أو البيوض المختلفة توليفات مختلفة من المورثات المرتبطة.


    الوراثة والانتخاب الطبيعي
    الطفرة أحد المصادر الرئيسية للمادة الوراثية الجديدة لنوع معين أو عشيرة معينة ـ مجموعة أفراد النوع الواحد في منطقة معينة. ويوفر التوليف الوراثي توليفات جديدة من الطفرات. ويعمل مصدرا التنوع الوراثي هذان معًا، إلى جانب عملية تسمى الانتخاب الطبيعي، على مر الزمن، مما يؤدي إلى تغير التركيب الوراثي للأنواع والعشائر.


    الانتخاب الطبيعي. معظم الطفرات التي تؤدي إلى تغير السمات ضارة، ولكن بعض الطفرات وتوليفات الطفرات تجعل بعض الكائنات الحية أكثر قدرة على البقاء والتزاوج والتكاثر في بيئة معينة. فهذه الكائنات أكثر قدرة على إنتاج نسل قادر على البقاء مقارنة بالكائنات التي ينقصها التنوع الوراثي الخاص. ويرث صغار الكائنات الأكثر ملاءمة المورثات الخاصة بالخصائص الإيجابية التي مكنت آباءها من تحسين قدرتها على البقاء والتزاوج والتكاثر، ومن ثم تمرَّر هذه المورثات إلى الجيل التالي. وبتكرار هذه العملية على مدى أجيال عديدة تكتسب أعداد أكبر وأكبر من أعضاء النوع أو العشيرة المورثات الإيجابية. وبهذه الطريقة تغير عملية الانتخاب الطبيعي التركيب الوراثي، وبالتالي سمات الكائنات، بمرور الزمن.

    ويحدث التطور عن طريق الانتخاب الطبيعي عادة ببطء، ولا يكون ملحوظًا خلال حياة الكائن البشري. ولكن قد يحدث تغير سريع في نوع معين استجابة لتغير رئيسي في البيئة، مثل التلوث واستخدام المبيدات.

    ومن أمثلة التغير الوراثي السريع ما حدث لنوع من العثات يسمى العثة الفلفلية في المملكة المتحدة خلال القرن التاسع عشر. فهذه العثات تستقر عادة على الأشنات الفاتحة اللون، التي تنمو على جذوع الأشجار. وخلال أوائل القرن التاسع عشر كانت كل العثات الفلفلية تقريبًا فاتحة اللون، وكانت أعداد قليلة تحمل طفرة أكسبتها اللون الأسود. وفي أواسط القرن التاسع عشر أحرقت المصانع كمية كبيرة من الفحم، مما أدى إلى تراكم السخام في المناطق الريفية، والذي أدى بدوره إلى موت الأشنات واسوداد جذوع الأشجار. ونتيجة لذلك كانت الطيور ترى العثات الفاتحة اللون على الأشجار الداكنة اللون بسهولة، وتأكلها. ولكنها لم تكن ترى العثات السوداء جيدًا، ولذلك استطاعت أعداد كبيرة منها أن تعيش وتتكاثر. وخلال خمسين عامًا أصبحت معظم العثات في المناطق الشديدة التلوث سوداء اللون. وبعد إجازة القوانين الخاصة بالتلوث الهوائي في منتصف القرن العشرين أصبحت جذوع الأشجار فاتحة اللون عندما بدأت الأشنات تنمو عليها من جديد، وبالتالي ازداد عدد العثات الفاتحة اللون.


    المستودعات الجينية وتكرر الأليلات. يطلق على مورثات كل أفراد عشيرة معينة اسم المستودع الجيني. ويسمى معدل وجود أليل معين في عشيرة ما تكرر الأليل. ومستوى التنوع في أي مستودع جيني مهم لأن التنوع الوراثي يمكِّن العشيرة من التلاؤم مع التغيرات البيئية. فالعشيرة المكونة من حشرات تحمل متغيرًا وراثيًا يمكِّنها من مقاومة مبيد جديد في بيئتها، على سبيل المثال، تكون أكثر قدرة على البقاء. وسيرتفع معدل انتخاب ذلك المتغير، ويزداد تكرره في المستودع الجيني. وفي الجانب الآخر، ستموت العشيرة المكونة من الحشرات التي لاتحمل هذا المتغير الوراثي.

    وتؤثر عوامل أخرى عديدة، بجانب الانتخاب الوراثي، على تكرر أليلات معينة في المستودع الجيني. ومن هذه العوامل سريان المورثات والانجراف الوراثي.

    سريان المورثات. هو انتقال المورثات من عشيرة إلى أخرى. فعندما تتقارب العشائر المنفصلة وتتناسل تدخل مورثات جديدة أو توليفات جديدة من مورثات إلى كل عشيرة وينتج عن ذلك أن يصبح المستودع الجيني لكل عشيرة محتويًا على مورثات من مستودعات العشائر الأخرى. وبهذه الطريقة قد يتغير تكرر أليلات العشائر على مر الزمن.

    الانجراف الوراثي. يشير هذا المصطلح إلى احتمالات ازدياد أو نقصان تكرر الأليلات في عشيرة ما من جيل إلى آخر. فمورثات كل جيل تمثل فقط عينة من المستودع الجيني للجيل الذي يسبقه. ونتيجة لذلك يتفاوت تكرر الأليلات لكل جيل من الأفراد عشوائيًا داخل حدود المستودع الجيني للجيل السابق. وقد يكون لمثل هذه التغيرات تأثير طفيف على كل جيل في العشائر الكبيرة، ولكنها قد تؤدي إلى تغيرات وراثية رئيسية في العشائر الصغيرة في فترة وجيزة.

    ولمزيد من المعلومات عن العوامل المؤثرة على التنوع الوراثي في العشيرة البشرية، انظر: الأجناس البشرية (كيف تتطور العشائر البشرية وتتغير).


    الاضطرابات الوراثية
    تنتج العديد من الأمراض والاضطرابات عن عوامل مثل الفيروسات والبكتيريا. ولكن سبب المرض أو الاضطراب في حالات معينة قد يكون وراثيًا ـ بمعنى أن الكائن الحي قد ورث مورثة شاذة واحدة أو أكثر من الأبوين. ولأن المورثات تحمل التعليمات الكيميائية الخاصة بإنتاج البروتينات فإن المورثات المعيبة قد تؤثر على إنتاج البروتينات ووظائفها. فالمنعورون (المصابون بالناعورية) على سبيل المثال، يحملون منذ ولادتهم مورثة معيبة، مما يجعلهم غير قادرين على إنتاج بروتين ذي أهمية فائقة في عملية تجلط الدم. ولذلك يعاني المنعورون من استمرار النزف لفترة طويلة عند حدوث جرح، بسبب بطء عملية تجلط الدم.

    وتترتب المورثات في نظام دقيق على امتداد الصبغيات. ويستخدم الباحثون عملية تسمى التخريط الجيني لتحديد مواقع المورثات على الصبغيات، والتعرف عليها. وقد ساعدت هذه العملية العلماء على تعيين المورثات المسؤولة عن بعض الحالات الوراثية. فمرض هنتنجتون، على سبيل المثال، وهو اضطراب حاد يصيب الجهاز الهضمي، تسببه مورثة شاذة على الصبغي الرابع.

    والعديد من الأمراض، مثل السكري والتهاب المفاصل الرثياني، شائعة في بعض العائلات، ولذلك يعتقد أنها ذات أساس وراثي. ويرث الناس النزوع للإصابة بهذه الأمراض، ولكنهم لايرثون الأمراض نفسها. وقد تؤدي العوامل البيئية دورًا في حدوثها. فالمصابون بالنزوع الوراثي للإصابة بالسكري، على سبيل المثال، قد يزيدون احتمال الإصابة بالمرض بالإفراط في الأكل وعدم أداء التمارين.

    وقد طور العلماء وسائل لعلاج بعض الاضطرابات الوراثية. فالناعورية على سبيل المثال، يمكن علاجها بحقن عامل التجلط الذي ينقص المصابين بالحالة.

    وقد تهيئ تقنية تسمى العلاج بالمورثات فرص علاج الاضطرابات الوراثية وبعض الأمراض الأخرى. وينطوي العلاج بالمورثات على التعرف على المورثة المسببة للمرض الوراثي، ومد المريض بنسخة طبيعية من تلك المورثة. وتؤخذ المورثات الطبيعية من فرد آخر أو كائن حي آخر، وتُدخل في خلايا المريض خارج الجسم، ثم تعاد الخلايا المغيّرة إلى جسم المريض. انظر: العلاج بالمورثات.

    ويمكن إجراء اختبارات على الأزواج الذين يرغبون في الحصول على الأبناء، للتعرف على ما إذا كانوا يحملون مورثات معينة شديدة الخطورة. وتجرى هذه الاختبارات عادة بوصفها جزءًا من عملية تسمى الاستشارة الوراثية، حيث تمكن هذه العملية الأزواج من التعرف على احتمالات حصولهم على أبناء مصابين بأمراض وراثية، كما تساعدهم على إيجاد طرق للتعامل مع حالاتهم. انظر: الاستشارة التكونية.


    --------------------------------------------------------------------------------

    الاضطرابات الوراثية
    يوضح هذا الجدول أعراض عدد من الاضطرابات الوراثية وعلاجها. فقد اكتشف العلماء، بفضل ازدياد معرفتهم بالمورثات، أن بعض الأمراض ذات أساس وراثي. فالمورثات المعيبة، على سبيل المثال، مسؤولة عن بعض حالات سرطان الثدي، وعن اضطراب دماغي يسمى مرض ألزهايمر.

    --------------------------------------------------------------------------------

    الاسم الأعراض العلاج
    * التليف الكيسي تلف الرئة والبنكرياس والكبد بسبب شذوذ في إنتاج المخاط الأدوية، علاج عضوي؛ علاج تجريبي بالمورثات؛ لا شفاء
    * حثل دشين العضلي ضعف متزايد للعضلات الأدوية، علاج عضوي؛ لا شفاء
    * الناعورية نزف داخلي وخارجي غير متحكم فيه حقن عامل التجلط المفقود
    * مرض هنتنجتون فقدان التحكم في العضلات والقدرة الذهنية، خاصة في منتصف العمر. لا علاج
    * البيلة الفنيلية الكيتونية التخلف العقلي نظام غذائي خاص لمنع ظهور الأعراض.
    * ورم أرومة الشبكية سرطان العين في الطفولة الإشعاع، الأدوية، الجراحة؛ قابل للعلاج عادة عند تداركه مبكرًا
    * مرض الخلية المنجلية فقر الدم، الجلطات الدموية، تلف الأعضاء والجهاز العصبي أدوية لتخفيف الأعراض؛ لا شفاء
    * مرض تاي - ساخس تلف دماغي حاد في الطفولة لا علاج ولا شفاء

    * للاضطراب مقالة في الموسوعة.


    الوراثة والبيئة

    التأثيرات البيئية يمكن رؤيتها في نباتات الذرة الشامية. استنبتت كل هذه النباتات من بذور متماثلة، وبالتالي فهي تحتوي على مُورِّثَات (وحدات وراثية) متماثلة. ولكن النباتات التي على اليمين نمت في تربة ينقصها بعض المغذيات اللازمة للنمو التام.
    توفر المورثة عادة احتمال اكتساب سمة معينة، ولكن الاكتساب الفعلي للسمة يعتمد جزئيًا على التفاعل بين تلك المورثة والمورثات الأخرى، كما يعتمد أيضًا على البيئة. فقد يكون لدى شخص معين، على سبيل المثال، نزوع وراثي نحو السمنة، ولكن الوزن الحقيقي للشخص يعتمد على عوامل بيئية مثل كمية الغذاء الذي يتناوله، ونوعه.

    ويسمى التركيب الوراثي المستبطن لسمة ما النمط الجيني، والظهور الحقيقي للسمة النمط الظاهري. ويستخدم مصطلح النمط الظاهري أحيانًا للإشارة إلى المظهر الكلي للفرد، والنمط الجيني للإشارة إلى التركيب الوراثي الكلي للفرد.

    ويدور الجدل بين العلماء منذ أمد بعيد حول العلاقة بين الوراثة والبيئة، ودورها في تحديد مظهر الشخص البدني وسلوكه. ويشار إلى هذا الجدل عادة بعبارة الطبع مقابل التطبع، ويعنون بذلك عادة الوراثة مقابل البيئة.

    ولفهم تأثير كل من الوراثة والبيئة على النمط الظاهري يدرس الباحثون عادة التوائم المتطابقة التي تحمل نفس النمط الجيني. وقد أوضحت هذه الدراسات أن التوأمين المتطابقين اللّذين يربيان في بيئتين مختلفتين يكتسبان خصائص مختلفة، مقارنة بالتوأمين اللّذين يربيان معًا. ونتيجة لذلك خلص العلماء إلى أن كلاً من الوراثة والبيئة يؤديان دورًا مهمًا في تشكيل النمط الظاهري النهائي للفرد.

    ويعتمد الذكاء أيضًا على الوراثة والبيئة، وكذلك السمات العقلية الأخرى. فكل فرد يولد بمقدرات عقلية معينة تحدد المدى الذي سيبلغه ذكاؤه في المستقبل. ويتوقف تطور هذه المقدرات على البيئة. فالأطفال الذين يعانون سوء التغذية الحاد، على سبيل المثال، قد يفشلون في تنمية مقدراتهم الطبيعية.


    انسياب المعلومات الوراثية

    المورثات والبروتينات. تحمل المورثات تعليمات إنتاج البروتينات، وهي جزيئات كبيرة معقدة، مكونة من وحدات أصغر تسمى الأحماض الأمينية. ويوجد عشرون نوعًا من الأحماض الأمينية عادة في البروتينات. وترتبط توليفات متنوعة من هذه الأحماض الأمينية لتكوين سلاسل طويلة تسمى عديدات الببتيدات، تلتف مكونة أشكالاً معقدة ثلاثية الأبعاد.

    وتتكون البروتينات من سلسلة عديد ببتيد واحدة أو أكثر. وتتفاوت هذه السلاسل كثيرًا في الطول بين سلاسل مكونة من عدد قليل من الأحماض الأمينية إلى سلاسل مكونة من آلاف الأحماض الأمينية. وهي تختلف أيضًا في طريقة انتظام الأحماض الأمينية. ويحدد طول سلاسل عديدات الببتيدات، وطريقة انتظام أحماضها الأمينية، شكل البروتين ووظيفته. وفي معظم الأحوال تكوِّن مورثة واحدة سلسلة عديد ببتيد واحدة، وتحدِّد عدد الأحماض الأمينية فيها، وبالتالي شكل البروتين ووظيفته.

    والبروتينات ضرورية للحياة النباتية والحيوانية، وتوجد في كل الخلايا. فالبروتينات المسماة الإنزيمات تسرِّع العمليات الكيميائية الضرورية للحياة، وانعدامها في الجسم كان سيؤدي حتمًا إلى حدوث التفاعلات البيوكيميائية ببطء شديد، وبالتالي استحالة استمرار حياة الكائن الحي. وتشمل هذه التفاعلات تكسير الطعام أثناء الهضم وحرق المواد الكربوهيدراتية والشحوم من أجل الطاقة.

    وتعمل العديد من البروتينات الأخرى كتلاً بنائية للخلايا. والخلايا ذات أحجام وأشكال مختلفة ـ وأنواع وأعداد وترتيبات مختلفة من البروتينات ـ اعتمادًا على أماكنها في الجسم. فالشعر والأظافر وجزء من الجلد تتكون من بروتين متين يسمى القراتين. ويأتي لون الدم الأحمر من بروتين أحمر يسمى الهيموجلوبين (اليحمور)، وظيفته حمل الأكسجين من الرئتين إلى جميع أجزاء الجسم. وتتكون العضلات إلى حد كبير من بروتينين يسميان الميوسين والأكتين.



    نموذج لجزيئ د ن أ. يُظهر أن د ن أ يشبه سُلمًا ملتويًا. تمثل الكرات الملونة الأنواع المختلفة للوحدات الكيميائية التى تكون د ن أ. وقد اقترح هذا النموذج عالما الأحياء فرانسيس كريك وجيمس واطسون في عام 1953م.
    تركيب د ن أ. تتكون مورثات كل الكائنات الحية، باستثناء بعض الفيروسات، من د ن أ، الذي يشار إليه عادة باسم المادة الوراثية. وهو جزيئ رفيع سلسلي الشكل مكون من وحدات كيميائية أصغر تسمى النوويدات. والنوويد في د ن أ مكون من سكر يسمى الريبوز منقوص الأكسجين، ومجموعة كيميائية مكونة من الأكسجين والفوسفور تسمى الفوسفات، ومركب يحتوي على النيتروجين يسمى القاعدة. وكل نوويدات د ن أ تحتوي على نفس السكر والفوسفات، ولكنها تتفاوت في أنواع القواعد. وهناك أربع قواعد هي الأدنين (أ) والجوانين (ج) والثيمين (ث) والسيتوسين (س).

    يتكون د ن أ من سلسلتين يلتف كل منهما حول الآخر مكونتين شكلاً يشبه السلم الملتوي، يسمى الحلزون المزدوج، يتكون جانباه من السكرات والفوسفاتات المرتبطة في النوويدات، بينما تتكون كل درجة من زوج من القواعد.

    أزواج القواعد. تزدوج قواعد د ن أ بطريقة خاصة لتكوين توليفات تسمى أزواج القواعد. وهناك اثنان من هذه الأزواج هما أ - ث و ج - س. فكل أدينين على أحد الخيطين يقابله ثيمين على الخيط الآخر، وكل جوانين على أحد الخيطين يقابله سيتوسين على الخيط الآخر. أما بقية التوليفات فنادرة جدًا. وبسبب هذا الازدواج الخاص يقول العلماء عن خيطي د ن أ إن كلاً منهما يكمِّل الآخر، حيث يحدد تسلسل القواعد على أحد الخيطين تسلسلها على الخيط الآخر.

    ويحتوي جزيئ د ن أ في الإنسان على أكثر من 100 مليون من أزواج القواعد، ويبلغ طوله أكثر من 2,5سم عند فك التفافه. ولكن د ن أ رفيع جدًا، ولذلك لايرى إلا بمساعدة مجاهر خاصة تسمى المجاهر الإلكترونية، حيث يبلغ سمك الجزيئ20 أنجستروم فقط (الأنجستروم يساوي 0,0000001 ملم)

    التناسخ. تنقسم معظم خلايا جسمك من حين إلى آخر. فإذا أصبت بقطع، على سبيل المثال، تبدأ خلايا الجلد المحيطة بالجرح في الانقسام لرتق الجرح بتكوين جلد جديد. وتكون الخلايا الجديدة الناتجة عن الانقسام محتوية على نفس د ن أ الخاص بالخلايا القديمة.


    جزيئ د ن أ يتناسخ بالانشقاق وتكوين شريطين. ويرتبط كل شريط بأشرطة جديدة مكونًا جزيئات «د ن أ» جديدة محتوية على نفس المعلومات. ترمز «ث» إلى الثيمين، «ج» إلى الجوانين، «أ» إلى الأدينين، «س» إلى السيتوسين.
    وتسمى العملية التي تنتج بها النسخ المطابقة لـ د ن أ أثناء الانقسام الخلوي التناسـخ. وهذا التناسـخ الدقيـق لـ د ن أ، أحد الخواص الأساسية للمادة الوراثية، وبدونها لن تتشابه الخلايا الجديدة وراثيًا، بعضها مع بعض، أو مع الخلايا الأم، وسيتغير تركيبك الوراثي، وبالتالي خصائصك البدنية، باستمرار مع انقسام خلايا جسمك.

    وتمكن الطبيعة التكاملية لخيطي د ن أ الخلية من إنتاج النسخ المطابقة له. فقبل انقسام الخلية تنشطر قطع من خيطي جزيئ د ن أ الأصليين طوليًا، فاصلة بين أزواج القواعد. وتشبه هذه العملية ما يمكن أن يحدث لسلم ينشطر طوليًا عبر منتصفه، بحيث تنقسم درجاته. وبعد الانشطار، يلتقط كل من خيطي د ن أ، اللذيْن يشبهان نصفي سلم منشطر نوويدات حرة من نواة الخلية. وتزدوج قواعد النوويدات الحرة، بما يرتبط بها من سكرات وفوسفاتات، مع القواعد المماثلة على خيطي د ن أ الأصلي، حيث يزدوج الأدينين مع الثيمين، والثيمين مع الأدينين، والجوانين مع السيتوسين، والسيتوسين مع الجوانين. وبهذه الطريقة، ينتج سلمان لـ د ن أ، لكل منهما خيطان، ويحملان نفس تسلسل قواعد د ن أ الأصلي. وعندما تنقسم الخلية يحصل كل من الخليتين الجديدتين على جزيئات متشابهة من د ن أ.


    كيف تنتج البروتينات. يمثل تسلسل القواعد في د ن أ الشفرة الوراثية للكائن الحي. وهذه الشفرة هي التي توجه الخلية إلى كيفية وضع الأحماض الأمينية معًا لتكوين عديد ببتيد معين.

    وتشكل كل مجموعة مكونة من ثلاث قواعد، بترتيب معين، وحدة تسمى الرامزة. وتختص كل رامزة بحمض أميني معين، ويحدد تسلسل الروامز في د ن أ تسلسل الأحماض الأمينية في البروتين ـ والناتج البروتيني المتكون.

    ويمكن تكوين 64 رامزة، تسمى الثلاثيات، من قواعد د ن أ الأربعة. ولكن العدد الفعلي 20 وليس 64، ولذلك نجد أكثر من رامزة واحدة لمعظم الأحماض الأمينية. وبالإضافة إلى ذلك، تحدد الروامز الثلاثية نفس الأحماض الأمينية في كل الكائنات الحية التي تناولتها الدراسات، وذلك باستثناءات قليلة. ولذلك فإن الشفرة الوراثية تكاد تكون كونية.

    ويحدث التعبير الجيني، أي العملية التي تنتج بها الخلية البروتين حسب التعليمات المحمولة في المورثات، بطريقتين هما 1- الانتساخ و2- الترجمة.

    الانتساخ. عملية تحدث بفعل صنو كيميائي لـ د ن أ يسمى ر ن أ (الحمض النووي الريبي)، وهو حمض نووي مثل ر ن أ، ويتكون من نوويدات، ولكن السكر في ر ن أ ريبوز عوضًا عن الريبوز منقوص الأكسجين، ويحتوي ر ن أ على القاعدة يوراسيل (ي) عوضًا عن الثيمين. ومثل الثيمين يزدوج اليوراسيل قاعديًا مع الأدينين.

    وفي أثناء الانتساخ تكوِّن الخلية نسخة ر ن أ لأحد خيوط د ن أ في مورثة. وينحل جزء من سلم د ن أ الملتوي وينشطر، حيث يؤدي أحد نصفي السلم وظيفة قالب لاصطفاف قواعد ر ن أ. وتزدوج قواعد النوويدات الحرة مع قواعد د ن أ المعرضة، حيث تزدوج القواعد س ي أس أ ج في ر ن أ، على سبيل المثال، مع القواعد ج أ ث ج ث س. في د ن أ. ويتكون خيط من ر ن أ يسمى ر ن أ الرسول، وهو نسخة مكملة لطبعة د ن أ الزرقاء.

    وباستمرار عملية الانتساخ تنسلخ نسخة ر ن أ الرسول عن قالب د ن أ، وتحمل تعليمات صنع بروتين المورثة إلى مصانع إنتاج البروتين في الخلية، وهي تركيبات تسمى الريبوسومات، تقع خارج النواة، في جزء من الخلية يسمى السيتوبلازم. ويؤدي ر ن أ الرسول دور توجيه الأحماض الأمينية حسب النظام الذي تأمر به المورثة، مكونًا سلسلة البروتين المطلوبة.

    الترجمة. في هذه المرحلة من التعبير الجيني تقرأ الريبوسومات الشفرة المكتوبة في ر ن أ الرسول، وتربط الأحماض الأمينية حسب النظام الذي تمليه روامز ر ن أ الرسول. ويؤدي نوع آخر من ر ن أ يسمى ر ن أ الناقل دورًا أساسيًا في عملية الترجمة، حيث يحمل الأحماض الأمينية إلى الريبوسومات من أجزاء السيتوبلازم الأخرى.

    ويحمل جزيئ ر ن أ الناقل موقعين ذوي أهمية قصوى في الترجمة، حيث يحتوي أحد الموقعين على مقابلة رامزة، تتكون من ثلاثة نوويدات. وتتكامل القواعد في نوويدات كل من مقابلات روامز ر ن أ الناقل مع تلك التي في رامزة ر ن أ الرسول، ولذلك تستطيع أن تزدوج قاعديًا معها. ويقع الموقع الآخر المهم عند أحد طرفي جزيئ ر ن أ الناقل، حيث يرتبط ر ن أ الناقل بحمض أميني خاص عند هذا الموقع. فعلى سبيل المثال، يرتبط ر ن أ الناقل الذي يحمل مقابلة الرامزة س ج ي برامزة ر ن أ الرسول ج س أ، الذي يشفر للحمض الأميني المسمى الألانين. ويرتبط طرف ر ن أ الناقل بالألانين، ويمكنه بذلك إيصال الألانين إلى الريبوسوم.

    ويحرك ر ن أ الرسول الروامز، واحدة تلو الأخرى، عبر الريبوسوم. وبعد وصول الرامزة إلى مركز تحليل الشفرات في الريبوسوم يأتي أحد جزيئات ر ن أ الناقل بالحمض الأميني المطلوب. وبهذه الطريقة ينمو عديد الببتيد، بإضافة حمض أميني في كل مرة، حتى يصل الريبوسوم إلى نهاية الرسالة المضمنة في ر ن أ الرسول، حيث تشير الرامزة الأخيرة في الرسالة إلى أن السلسلة قد اكتملت، وتطلب من الريبوسوم إيقاف الإنتاج.

    وبعد أن يقرأ الريبوسوم رامزة الإيقاف، تُطلَق سلسلة عديد الببتيد المكتملة التكوين، ويستطيع الريبوسوم عندئذ إنتاج عديد ببتيد آخر. وفي معظم البروتينات التي تتكون من أكثر من سلسلة عديد ببتيد واحدة تصنع السلاسل على انفراد، ثم ترتبط بعد ذلك لتكون البروتين.


    تاريخ دراسة الوراثة

    الأفكار الأولى عن الوراثة. اقترح الفيلسوف الإغريقي أرسطو، الذي عاش في القرن الثالث قبل الميلاد، إحدى أقدم النظريات المعروفة في مجال الوراثة، حيث أشار إلى أن السمات تورث عبر الدم. وقد كانت هذه النظرية خاطئة ولكنها ظلت مقبولة لأكثر من ألف عام.

    ولم يتمكن العلماء من التوصل إلى نظرية صحيحة عن الوراثة إلا بعد اكتشاف الخلايا الجنسية وتحديد وظائفها. وقد اكتشفت البيوض والنطاف في أواخر القرن السابع عشر. وفي ذلك الوقت كان العديد من علماء الأحياء يعتقدون أن البيضة أو النطفة تحتوي على جنين صغير الحجم ولكنه مكتمل التكوين، ويزداد حجمه بالتدريج داخل رحم المرأة. وفي أواخر القرن الثامن عشر، أثبت العالم الألماني كاسبار فريدريتش وولف أن الجنين لايكون مكتمل التكوين منذ بدايته. وأوضح أن الجنين ينمو من بيضة مخصبة، وأن البيضة والنطفة يساهمان في تكوينه بالتساوي.

    وخلال أوائل القرن التاسع عشر، اقترح النبيل وعالم الأحياء الفرنسي شيفالييه دو لامارك أن السمات التي تكتسب أثناء حياة الكائن الحي يمكن أن تمرر إلى النسل. وأوضحت الاكتشافات الوراثية المتأخرة أن السمات المكتسبة لا تنتقل من جيل لآخر.

    وكانت هذه النظرية، بالرغم من عدم صحتها، مقبولة لدى عالم الأحياء البريطاني تشارلز داروين، الذي اقترح نظرية الانتخاب الطبيعي في كتابه أصل الأنواع (1859م). فقد اعتقد داروين، أن كل جزء من أجزاء الجسم ينتج جسيمات دقيقة تتحرك عبر مجرى الدم إلى البيوض أو النطاف، وأن هذه الجسيمات هي التي تسيطر على السمات الوراثية. ولم يقبل العالم البريطاني فرانسيس جالتون، وهو ابن أخ داروين، هذه الفكرة، حيث أجرى عملية نقل دم من أرانب سوداء إلى أرانب بيضاء، ليرى ما إذا كانت الأرانب البيضاء ستنجب أرانب سوداء. ولكن الأرانب البيضاء أنجبت صغارًا بيضاء أيضًا.


    --------------------------------------------------------------------------------

    دراسة الوراثة يهدف هذا النشاط إلى دراسة دور كل من البيئة والوراثة في تحديد النمط الظاهري ـ أي الخصائص الملحوظة ـ للكائن الحي، ببحث تأثير العوامل البيئية المختلفة في نمو نبات البطاطس. فالعيون (البراعم) التي تنمو من نفس البطاطس لها نفس التركيب الوراثي، وتستطيع النمو إلى نبات جديد. وبزراعة عيون البطاطس، وتغيير الظروف البيئية مثل الضوء والماء ودرجة الحرارة، يمكنك أن ترى كيفية تأثير العوامل البيئية على الخصائص.

    --------------------------------------------------------------------------------


    نشاط تجريبي
    المواد المطلوبة
    بطاطس
    سكين
    عدد من الأوراق الشمعية أو الأكواب البلاستيكية.
    تربة تأصيص، رمل، ماء
    غذاء نباتي أو أي مواد أخرى ترى ضرورة استعمالها.
    الخطوات
    - اقطع البطاطس بحيث تكون كميات البطاطس حول كل عين متساوية.
    - املأ الأوراق الشمعية أو الأكواب البلاستيكية بنفس خليط تربة التأصيص والرمل والماء (ينمو البطاطس بصورة أفضل في التربة ذات الرمل القليل، وعند درجات حرارة تتراوح بين 16° و21°م).
    - ازرع قطع البطاطس بحيث تقع العيون فوق سطح التربة مباشرة. وفرلأحد العيون كل المقومات التي تساعد على نموها جيدًا، مثل الضوء الكافي والماء. هذه العين سوف تكون الحاكم لتجربتك ـ أي سوف تكون المعيار الذي تقارن به بقية العيون.
    - غير لكل عين من العيون ظرفًا مختلفًا. ضع أحد العيون مثلاً في مكان مظلم. أعط إحدى العيون نصف كمية الماء التي تعطيها لبقية العيون. أعط عينًا أخرى غذاءًا نباتيًا حسب التوجيهات الواردة في علبة التعبئة. ضع إحدى العيون داخل ثلاجة لترى تأثير الجو البارد على النمو. وفيما عدا الظرف الذي تغيره لكل عين حاول أن تجعل بقية العوامل البيئية متساوية بقدر الإمكان. علِّم كل كوب بحيث يمكنك أن تعرف أي العوامل مختلف لكل كوب. راقب العيون لعدة أسابيع لترى كيفية نموها، واحتفظ بسجل لنمو كل نبات. ويمكنك تضمين السجلات رسومًا لكل نبات.
    النتائج بعد مرور عدة أسابيع حلل المادة التي جمعتها. هل هناك اختلافات في الطريقة التي نمت بها النباتات؟ هل يبدو أحد العوامل أكثر تأثيرًا من بقية العوامل في تحديد نمو النبات؟ هل تكتسب النباتات ذات التركيب الوراثي المتشابه نفس الخصائص الملحوظة؟ ما العلاقة التي يمكنك أن تستنتج أنها تربط بين النمط الوراثي والنمط الظاهري؟
    مد النشاط تفكر في النمط الوراثي والنمط الظاهري في الإنسان. تفكر في عوامل مثل الغذاء والمأوى باعتبارها جزءًا من بيئة الإنسان. هل تعتقد أن مظهرك وسلوكك كانا سيختلفان إذا كنت قد نشأت بنفس نمطك الوراثي في منزل من نوع آخر، وكان غذاؤك مختلفًا عما تناولته من غذاء؟ ما العوامل الأخرى التي تعتقد أنها تشكل جزءًا من بيئتك؟




    --------------------------------------------------------------------------------

    تجارب مندل على الوراثة في أواسط القرن التاسع عشر درس الراهب وعالم النبات النمساوي جريجور مندل السمات في نبات البازلاء. وتوضح الأشكال أدناه الخطوات الرئيسية لتجارب مندل على لون البذرة.

    --------------------------------------------------------------------------------


    بدأ مندل تجاربه بسلالتين نقيتين من نبات البازلاء، سلالة ذات بذور صفراء وأخري ذات بذور خضراء. وأجرى تلقيحًا بين هاتين السلالتين، وكانت كل البذور الهجينة الناتجة صفراء اللون. واستنتج من ذلك أن لون البذور الأصفر سمة سائدة.


    أنتجت النباتات التي نمت من البذور الصفراء بذورًا صفراء وخضراء بنسبة 3 : 1 تقريبًا. وقد تمكن مندل، بفضل أنماط الوراثة التي اكتشفها في هذه التجربة، وغيرها من التجارب المماثلة، من صياغة أول نظرية صحيحة عن الوراثة.


    قانونا مندل. خلال أواسط القرن التاسع عشر أجرى الراهب النمساوي وعالم الأحياء جريجور مندل سلسلة من التجارب على الوراثة، حيث درس في حديقة ديره السمات الوراثية في نبات البطاطس. وقادت نتائج هذه التجارب مندل إلى صياغة أول نظرية صحيحة عن الوراثة، تكونت من مبدأين سميا قانونَيْ مندل للوراثة. يتكون قانون مندل الأول، والذي يسمى قانون الانعزال، من ثلاثة أجزاء هي 1- تحدد وحدات منفصلة (تسمى الآن المورثات) الخصائص الوراثية 2- توجد هذه الوحدات في أزواج 3- تنعزل (تنفصل) مورثتا كل زوج أثناء انقسام الخلايا الجنسية، وتستقبل كل نطفة أو بيضة مورثة واحدة من كل زوج.

    ويسمى قانون مندل الثاني قانون الاتساق المستقل. وينص هذا القانون على أن كل زوج من أزواج المورثات يتصرف بمعزل عن الآخر أثناء إنتاج الخلايا الجنسية، ولذلك يورث كل زوج بمعزل عن الأزواج الأخرى. ويعرف علماء الوراثة الآن أن الاتساق المستقل لا ينطبق إلا على المورثات التي توجد في صبغيات مختلفة، أو التي توجد على مسافات متباعدة في نفس الصبغي. أما المورثات المرتبطة، أو التي توجد قريبة بعضها من بعض في نفس الصبغي، فتورَّث معًا.


    ميلاد علم الوراثة. نشر مندل تقريرًا عن عمله في عام 1866م. وظل هذا التقرير مجهولاً حتى عام 1900م عندما أعاد ثلاثة علماء نبات أوروبيين، كل على حدة، اكتشافه أثناء تجاربهم حول الوراثة. فقد أجرى هؤلاء العلماء ـ وهم الهولندي هوجو دو فريس، والألماني كارل كونز، والنمساوي إيريخ فون تشيرماك ـ تجارب على استيلاد النباتات، وتوصلوا، كل على حدة، إلى نفس ما توصل إليه مندل من نتائج.

    وتلا ذلك عدد من الاكتشافات الوراثية الهامة. فخلال أوائل القرن العشرين، اكتشفت مجموعة من العلماء بجامعة كولومبيا في نيويورك سيتي، بقيادة توماس هنت مورجان، عددًا من المبادئ الوراثية المهمة. وقد درس مورجان ومجموعته، التي تألفت من كالفن بريدجز وهيرمان مولر وألفرد ستيرتفانت، توارث سمات مثل لون العيون وشكل الأجنحة في ذبابة الفاكهة، وبينوا أن المورثات توجد في الصبغيات، وصمموا أول خريطة وراثية، وأوضحوا انتقال المورثات عبر الصبغيات الجنسية، واكتشفوا التعابر. وفي عام 1931م، أوضحت عالمة الأحياء الأمريكية باربارا ماكلنتوك أن التعابر ينطوي على تبادل عضوي لمادة الصبغيات.




    كيمياء المورثات. أصبحت كيمياء المورثات محط اهتمام أبحاث كثيرة منذ عام 1940م. وبحلول أوائل خمسينيات القرن العشرين كان العلماء قد أثبتوا أن المورثات تتحكم في التفاعلات الكيميائية في الخلية بتوجيه إنتاج الإنزيمات وغيرها من البروتينات، وحددوا أن د ن أ هو المادة الوراثية.

    وفي عام 1953م، اقترح عالمان، هما الأمريكي جيمس واطسون والبريطاني فرانسيس كريك، نموذجًا للتركيب الكيميائي السلّمي لـ د ن أ ـ أي الحلزون المزدوج. وكان نموذجهم نقطة تحول في مجال الوراثة، حيث أوضحوا لأول مرة كيفية تناسخ د ن أ. فقد بيّن العالمان أن د ن أ يتناسخ بالانشطار طوليًا عند منتصفه، وبناء سلمين باستكمال بناء نصفي السلم المنشطر. واقترح العالمان أيضًا أن الطفرة تنتج عن تغيير في تسلسل القواعد على امتداد السلم. وفي عام 1958م، أوضح عالما الوراثة الأمريكيان ماثيو ميسلسون وفرانكلين ستال تجريبيًا أن د ن أ يتناسخ بنفس الطريقة التي أوضحها كل من واطسون وكريك.

    وفي عام 1961م، سجل علماء في معهد كاليفورنيا للتقنية اكتشافهم لـ ر ن أ الرسول. وفي نفس العام، تعرَّف عالم الكيمياء الحيوية الأمريكي مارشال نيرنبرج وزملاؤه في المعهد الوطني للصحة على الكلمة الأولى للشفرة الوراثية ـ أي ي ي ي. وبحلول عام 1967م كانت الشفرة بأكملها قد حلت.


    عصر الهندسة الوراثية. استخدمت العديد من الدراسات التي أجريت في مجال الوراثة منذ سبعينيات القرن العشرين تقنية تسمى الهندسة الوراثية أو تقنية د ن أ المولف، وهي تقنية تغير مورثات الكائن الحي لإنتاج جزيئات تسمى د ن أ المولف.

    ولإنتاج د ن أ المولف يستخدم العلماء أولاً إنزيمات تسمى إنزيمات الحصر لقطع د ن أ الصبغي من نبات أو حيوان إلى قطع، ثم يصنعون جزيئًا من د ن أ المولف بربط هذه القطع كيميائىًا بجزيئات د ن أ خاصة تسمى المتجهات، وهي جزيئات تستطيع أن تدخل إلى الخلايا وتتناسخ. وبعد ذلك يزرع العلماء د ن أ المولف في خلية بكتيرية أو خلية خميرة. وعندما تتكاثر هذه الخلايا يستطيع العلماء الحصول على عدد ضخم من الخلايا المتشابهة التي تحتوي على د ن أ المولف. وتسمى مجموعة الخلايا المتشابهة وراثيًا النسيلة.

    وقد كشفت التجارب التي أجريت باستخدام د ن أ المولف الكثير عن تركيب المورثات ووظيفتها. ولتقنية د ن أ المولف أيضًا تطبيقات طبية مهمة. ففي عام 1982م، أصبح الإنسولين المهندس وراثيًا، المستخدم في علاج مرضى السكري، أول عقار من عقاقير د ن أ تقره الإدارة الأمريكية للأغذية والأدوية، لاستخدامه على الناس. وتبعته عقاقير أخرى منها هورمون النمو البشري، الذي يستخدم في علاج الأطفال الذين يعانون انخفاضًا حادًا في معدل النمو؛ ومنشط مولد البلزمين النسيجي، المستخدم في علاج النوبات القلبية بتفتيت الجلطات الدموية؛ والإنترفرون، المستخدم في إيقاف انتشار الفيروسات من خلية لأخرى.

    ومن التطبيقات الطبية المهمة الأخرى لتقنية د ن أ المولف العلاج بالجينات. ففي عام 1990م وأوائل عام 1991م، استخدم باحثون في المعهد الوطني للصحة العلاج بالجينات على المرضى لأول مرة، حيث عالجوا فتاتين لديهما مورثات معيبة لإنزيم نازعة أمين الأدينوزين، حيث أدت المورثات إلى نقص في الإنزيم، أدى بدوره إلى إصابة الفتاتين بضعف حاد في جهاز المناعة. وقد استخدم الباحثون فيروسًا محورًا لنقل نسخة طبيعية من مورثة نازعة أمين الأدينوزين إلى الفتاتين. وبعد أشهر قليلة من العلاج استعاد جهاز المناعة عافيته، ولكن الحالة عادت مرة أخرى، واضطرت الفتاتان إلى تناول علاج إضافي دوري. وفي عام 1993م، استخدم باحثو المعهد الوطني للصحة العلاج لأول مرة على مريض بالتليف الكيسي، وهو اضطراب وراثي ينتج عنه تراكم المخاطر بكثافة على الرئة، مما يهدد حياة المريض.

    وبحلول منتصف تسعينيات القرن العشرين، كانت فرق من علماء الوراثة قد تعرفت على المورثات التي تتحكم في عدد من الاضطرابات الوراثية الخطيرة، واستنسلتها. ومن هذه الاضطرابات التصلب الوحشي الضموري وحثل دشين العضلي ومرض هنتنجتون.

    ولتقنية د ن أ أيضًا تطبيقات زراعية. فالباحثون يجرون تجارب باستخدام تقنيات الهندسة الوراثية لتحسين بعض خصائص المحاصيل، بما في ذلك مقدرة النباتات على مقاومة الأمراض والآفات. وفي عام 1994م، أصدرت الإدارة الأمريكية للأغذية والأدوية ترخيصًا لبيع نوع من الطماطم المهندس وراثيًا، ذي خصائص مميزة.


    مشروع المجين البشري. في أواخر ثمانينيات القرن العشرين دشن علماء في الولايات المتحدة وعدد من الدول الأخرى مشروع المجين البشري، لتصميم خريطة وراثية لمجمل المورثات البشرية ـ أي المورثات المكونة للمجين البشري، البالغ عددها ما بين 50,000 و100,000 مورثة. ومن أهداف المشروع أيضًا تحديد التسلسل القاعدي لأزواج القواعد البالغ عددها 3 بلايين من أزواج القواعد في كل جزيئات د ن أ في الخلية البشرية. ويأمل علماء الوراثة أن تساعدهم الخريطة البشرية في التعرف على المزيد من المورثات المرتبطة بالأمراض. ويعتقدون أنهم كلما أسرعوا في تحديد مواقع هذه المورثات، والتعرف عليها، تزداد مقدرتهم على تصميم استراتيجيات لعلاج الأمراض. وفي عام 1993م، أعلن علماء فرنسيون نجاحهم في تصميم خريطة تقريبية للمجين البشري. وفي عام 1996م، استطاع فريق من العلماء بقيادة عالم الأحياء إيان ولمت إنجاز أول استنساخ ناجح لحيوان من ذوات الثدي من خلايا حيوان بالغ. فقد استطاعوا إنتاج نسيلة لنعجة أطلق عليها اسم دوللي. ولما كان لدوللي المادة الكيميائية د ن أ نفسها للشاة التي استنسخت خلاياها فقد أصبحت الشاتان متطابقتين وراثياً تماماً. وباتباع الأسلوب نفسه تم استنساخ بعض الفئران عام 1998م. واحتدم الجدل بعد ذلك حول جدوى الاستنساخ الآدمي. وبنهاية القرن العشرين استطاع علماء مشروع المجين البشري الحصول على سلاسل جينومات لبعض الكائنات الحية مثل الدودة الأسطوانية والخميرة وغيرهما من الكائنات الحية.

    وفي مطلع عام 2000م، أعلن عن فك شفرة الخارطة الجينية وهو إنجاز علمي جعله كثير من العلماء بنفس أهمية الإنجاز العلمي الذي حققه الإنسان عندما حط بقدمه على سطح القمر عام 1969م. وينتظر أن يفتح فك هذه الشفرة المجال واسعاً أمام تطوير كبير في الهندسة الوراثية، وتشخيص ومعالجة كثير من الأمراض، ولكن ربما العبث بالأسس الأخلاقية أيضاً.











    المصدر : الموسوعة العربية العالمية










    عميل سري مجهول

  2. #2

    افتراضي رد : بحوث للمواد العلمية

    ما شاء الله عليك اخي تسلم ومشكور على المشاركة

  3. #3
    تربوي رائع
    تاريخ التسجيل
    Jan 2005
    الدولة
    عــــبــري الواعـدة
    المشاركات
    429

    افتراضي رد : بحوث للمواد العلمية

    بارك الله فيك اخي الغالي

  4. #4

    افتراضي رد : بحوث للمواد العلمية

    نريد اسم مخترع القطار وعام كم؟؟ياااااااااااااااااااا ابو خالد ضرورى الحين

  5. #5

    افتراضي رد : بحوث للمواد العلمية

    الاسلام عليكم ورحمة من الله وبركاته

    ارجوا من اخواني المساعدة للضرورة

    اريد بحث بعنوان العلاقة بين كمية التحرك

    والدفع

    أو بحث بعنوان طرق نقل الشحنات الكهربائية

  6. #6

    افتراضي رد : بحوث للمواد العلمية

    السلام عليكم ..

    العلاقة بين كمية التحرك والدفع :
    http://www.labagrut.net/vb/showthread.php?p=21658

    طرق نقل الشحنات الكهربائية :
    http://www.qalqilia.edu.ps/vandeg.htm

  7. #7
    تربوي موهوب
    تاريخ التسجيل
    Apr 2008
    الدولة
    فرنسا... باريس
    المشاركات
    25

    افتراضي رد : بحوث للمواد العلمية

    يسلمو... الموضوع كبير شوي بس حلو...
    ألف شكر ...
    تقبل مروري ...
    أخوك/ الفرنساوي

ط§ظ„ط¹ظ„ط§ظ…ط§طھ ط§ظ„ظ…ط±ط¬ط¹ظٹط©

ط§ظ„ط¹ظ„ط§ظ…ط§طھ ط§ظ„ظ…ط±ط¬ط¹ظٹط©

ضوابط المشاركة

  • لا تستطيع إضافة مواضيع جديدة
  • لا تستطيع الرد على المواضيع
  • لا تستطيع إرفاق ملفات
  • لا تستطيع تعديل مشاركاتك
  •  
XHTML RSS CSS w3c